
Final Report: Intent Specifications

Nancy G. Leveson

We have been investigating the implications of using abstractions based on intent rather

than the aggregation and information-hiding abstractions commonly used in software en-

gineering: Cognitive psychologists have shown that intent abstraction is consistent with

human problem-solving processes. We believe that new types of specifications and designs

based on this concept can assist in understanding and specifying requirements, captur-

ing the most important design rationale information in an efficient and economical way,

and supporting the process of identifying and analyzing required changes to minimize the

introduction of errors.

The goal of hierarchical abstraction is to allow both top-down and bottom-up reasoning

about a complex system. In computer science, we have made much use of (1) part-whole

abstractions where each level of a hierarchy represents an aggregation of the components at

a lower level and of (2) information-hiding abstractions where each level contains the same

conceptual information but hides some details about the concepts, that is, each level is a

refinement of the information at a higher level. Each level of our software specifications

can be thought of as providing "what" information while the next lower level describes

"how." Such hierarchies, however, do not provide information about "why." Higher-level

emergent information about purpose or intent cannot be inferred from what we normally

include in such specifications. Design errors may result when we either guess incorrectly

about higher-level intent or omit it from our decision-making process. For example, while

specifying the system requirements for TCAS using a pseudocode specification, we learned

(orally from a reviewer) that crossing maneuvers were avoided in the design for safety

reasons. This important safety constraint was not represented in the pseudocode (and

could not have been unless it had been added in textual comments somewhere).

Each level of an intent abstraction (or what Rasmussen calls a means-end abstraction

[Ras86]) contains the goals or purpose for the level below and describes the system in
terms of a different set of attributes or language. Higher level goals are not constructed by

integrating information from lower levels; instead each level provides different, emergent

information with respect to the lower levels. A change of level represents both a shift in

concepts and structure for the representation (and not just a refinement of them) as well as a

change in the type of information used to characterize the state of the system at that level.

Mappings between levels are many-to-many: Components of the lower levels can serve

severalpurposeswhilepurposesat a higher level maybe realizedusingseveralcomponents
of the lower-levelmodel. Thesegoal-orientedlinks betweenlevelscanbe followedin either
direction. Changesat higher levelswill propagatedownward,i.e., requirechangesin lower
levelswhile designerrorsat lower levelscan only be explainedthrough upward mappings
(that is, in terms of the goalsthe designis expectedto achieve).

Considerationof purposeor reason(top-downanalysisin an intent hierarchy) hasbeen
shown to play a major role in understanding the operation of complex systems[Ras85].
Experts and successfulproblem solvers tend to focus first on analyzing the functional
structure of the problem at a high level of abstraction and then narrow their searchfor
a solution by focusing on more concretedetails [GC88]. Representationsthat constrain
searchin a way that is explicitly related to the purposeor intent for which the system
is designedhave been shown to be more effective than those that do not becausethey
facilitate the type of goal-directedbehavior exhibited by experts [VCP95]. Therefore,we
should be able to improve the problem solving required in software evolution tasks by
providing a representation(i.e., specification)of the systemthat facilitates goal-oriented
searchby making explicit the goalsrelated to eachcomponent.

As stated earlier, purposeor intent abstraction hasbeenusedsuccessfullyin cognitive
engineeringby Rasmussenand Vicente for the designof operator interfaces[DV96,Vic91].
We have been applying it to designingsystem and softwarespecifications. Changesare
required(mostly augmentations)to adopt the approachto adifferent problem. The changes
include addingmodelsof the environmentandof the humancomponents(operators) in the
systemalong with any displaysand controls that operatorsmay use. This changeallows
the integration of softwareand human-interfacedesign.

We have also changedthe content of the levelsof the intent abstraction. System and
softwarespecificationsof the type weareproposingareorganizedalongtwo dimensions:in-
tent abstraction and part-whole abstraction. Thesetwo dimensionsconstitute the problem
spacein which the humannavigates.The vertical dimensionspecifiest-helevelof intent at
which the problem is being considered,i.e., the languageor model that is currently being
used. The part-whole (horizontal) dimensionallowsusersto changetheir focusof attention
to moreor lessdetailed views within eachlevelor model. The information at eachlevel is
fully linked to related information at the levelsaboveand below it.

1 Results

We have developed the theory underlying intent specifications by investigating issues con-

cerning the content and organization of the levels and traceability (particularly traceability

of safety information). A paper on this topic has been accepted for IEEE Transactions

on Software Engineering and is included with the final report. The paper is scheduled to

appear in the January 2000 issue of the journal.

We havealsoinvestigatedthe feasbility of writing intent specificationsby writing them
for industrial problems, the most complex of which has beenTCAS II. TCAS II is an
on-board collision avoidancesystem that is required on most commercial aircraft flown
in U.S. airspace. The systemhasbeendescribedas oneof the most complex automated
systemsthat hasbeenintegrated into the avionicsof commercialaircraft.

We alsousedthe lessonslearnedfrom writing the FAA TCAS II systemspecification in
a languagewecall RSML. RSML wasdevelopedfor this application. After many yearsof
use,wehaveidentified important neededimprovementsand havedesigneda new language
calledSpecTRM-RL. SpecTRM is a set of developmenttools for embeddedsystemsand
SpecTRM-RL is the requirementslanguageused to build system models. With respect
to intent specifications,SpecTRM-RL is used to specify the third level (blackbox system
behavior).

Like RSML, SpecTRM-RL is basedon a state machine model. Readability and re-
viewability with little training was a primary goal for both languages. We believe that
readability is enhancedin the preliminary designof SpecTRM-RL. In addition, we have
removedthe most error-pronefeatureof RSML (and relatedstate-machinelanguages,such
as Statecharts) which is internally broadcastevents. Also, we have added the ability to
organizethe specification usingmodes,an abstraction commonlyusedby engineersto de-
sign complexsystems.A paper on the designof SpecTRM-RL hasbeenacceptedfor the
IEEE/ACM Conferenceon Foundationsof SoftwareEngineeringand will be presentedin
September1999.A copy of this paper is alsoincluded with this final report

2 Bibliography

[Che81]

[DV96]

[Gc88]

[Lev95]

[Ras85]

[Ras86]

[Vic91]

[VCP95]

P. Checkland. Systems Thinking, Systems Practice. John Wiley & Sons, 1981.

N. Dinadis and K.J. Vicente. Ecological interface design for a power plant

feedwater subsystem. IEEE Transactions on Nuclear Science, in press.

R. Glaser and M. T. H. Chi. Overview. In R. Glaser, M. T. H. Chi, and M. J.

Farr, editors, The Nature of Expertise. Erlbaum, Hillsdale, New Jersey, 1988.

N.G. Leveson. Safeware: System Safety and Computers. Addison-Wesley Pub-

lishing Company, 1995.

J. Rasmussen. The Role of hierarchical knowledge representation in decision

making and wystem management. IEEE Transactions on Systems, Man, and

Cybernetics, vol. SMC-15, no. 2, March/April 1985.

J. Rasmussen. Information Processing and Human-Machine Interaction: An

Approach to Cognitive Engineering. North Holland, 1986.

K.J. Vicente. Supporting knowledge-based behavior through ecological interface

design. Ph.D. Dissertation, University of Illinois at Urbana-Champagne, 1991.

Kim J. Vicente and Klaus Christoffersen and Alex Pereklit. Supporting operator

[VR92]

problem solving through ecological interface design. IEEE Transactions on

Systems, Man, and Cybernetics, 25(4):529-545, 1995.

K.J. Vicente and J. Rasmussen. Ecological interface design: Theoretical foun-

dations. IEEE Transactions on Systems, Man, and Cybernetics, vol 22, No. 4,

July/August 1992.

4

/

d
/

Designing Specification Languages for

Process Control Systems:

Lessons Learned and Steps to the Future

Nancy G. Leveson 1, Mats P.E. Heimdahl 2, and Jon Damon Reese

i Aeronautics and Astronautics Dept.

MIT

Room 33-406, 77 Massachusetts Ave.

Cambridge, MA 02139-4307

levesonlmit, edu

2 Computer Science and Engineering Department,

University of Minnesota,

4-192 EE/CS Building, 200 Union Street S.E.

Minneapolis, MN 55455,
heimdahl@cs, umn. edu

Abstract. Previously, we defined a blackbox formal system modeling

language called RSML (Requirements State Machine Language). The

language was developed over several years while specifying the system

requirements for a collision avoidance system for commercial passenger

aircraft. During the language development, we received continual feed-

back and evaluation by FAA employees and industry representatives,

which helped us to produce a specification language that is easily learned

and used by application experts.

Since the completion of the RSML project, we have continued our re-

search on specification languages. This research is part of a larger effort

to investigate the more general problem of providing tools to assist in

developing embedded systems. Our latest experimental toolset is called

SpecTl_M (Specification Tools and Requirements Methodology), and the

formal specification language is SpecTRM-RL (SpecTRM Requirements

Language).

This paper describes what we have learned from our use of RSML and

how those lessons were applied to the design of SpecTRM-RL. We discuss

our goals for SpecTRM-RL and the design features that support each of

these goals.

1 Introduction

In 1994, we published a paper describing a blackbox formal system modeling lan-

guage called RSML (Requirements State Machine Language). The language was

developed over several years during an effort to specify the system requirements

for a collision avoidance system for commercial passenger aircraft called TCAS

II (Traffic Alert and Collision Avoidance System). Because this was to be the

official FAA (Federal Aviation Administration) specification, it was developed
with continual feedback and evaluation by FAA employees, airframe manufac-

turers, airline representatives, pilots, and other external reviewers. Most of the

reviewers were not software engineers or even computer scientists, and we believe

this helped in producing a specification language that is easily learned and used

by application experts. RSML is still being used by the FAA, its subcontractors,

and RTCA committees to specify the upgrades and changes to TCAS II.

Those designing specification languages often have themselves in mind as po-

tential users. However, our familiarity with certain notations, especially mathe-

matical notations, such as predicate calculus, hides their weaknesses. Our first

attempts at designing RSML, therefore, were failures: Our notation was clear to

us but not to the representatives from the airframe manufacturers, component

subcontractors, airlines, and pilot groups that reviewed the TCAS specification

during its development. The feedback from a diverse group of users helped us to

evaluate the evolving specification language more objectively in terms of what
did and did not need to be in the language; how to satisfy our language design

criteria; and its practicality, feasibility, and usability.

Due to pressure to meet FAA deadlines for getting TCAS II on aircraft, we

were unable to use immediately all the lessons learned from that experience and

apply it to the design of RSML. Since that time, we have specified several ad-
ditional systems including a robot, flight management system, and air traffic

control components, each time learning more lessons about the design of for-

mal specification languages. Our research goal is to determine how specification

languages can be designed to reflect these lessons. Our research paradigm is to

determine important goals for specification languages from experience with in-

dustrial applications, to generate hypotheses about how these goals might be

accomplished, and then to instantiate these hypotheses in the design of a spec-

ification language that we will use in future experimentation. In this way, we

hope to build knowledge incrementally about how to most effectively design

specification languages.
Our specification language research is part of a larger research effort to in-

vestigate the more general problem of providing tools to assist in developing
embedded systems. Our latest experimental toolset is called SpecTRM (Spec-

ification Tools and Requirements Methodology), and the formal specification

language is SpecTRM-RL (SpecTRM Requirements Language). In addition to

the general goals we had for designing RSML [9], the lessons we have learned to

date have focused our latest efforts on solving the following problems:

1. Through the use of RSML, we have determined that readability and re-
viewability by domain experts can be further enhanced by minimizing the
semantic distance between the reviewer's mental model and the constructed

models. The problem we are now addressing is how to construct a modeling

language that will allow and encourage modelers to reduce this semantic

distance in the models they build.

2. Specifiers are used to including internal design in their specifications and

seem to have difficulty building pure blackbox requirements models. So a

secondgoalwasto providemoresupportandguidancein buildingsoftware
requirements(versussoftwaredesign)models.

3. Wefoundcertaincommonfeaturesof formalspecificationlanguageswere
veryerror-pronein use.In particular,theuseof internalbroadcastevents
accountedformostoftheerrorsfoundbyreviewersoftheTCAS specification

and also contributed substantially to the difficulty reviewers had in reading

the models. A third goal for SpecTRM-RL was to determine if such internal

events can be effectively eliminated from state-based modeling languages.

4. Formal models are expensive to produce. Thus, reuse of at least parts of the

language should be supported by the language design. Such features should

also support the design of models for product families.

5. Accidents and major losses involving computers are usually the result of

incompleteness or other flaws in the software requirements, not coding er-

rors [8, 12]. We previously defined a set of formal criteria to identify missing,

incorrect, and ambiguous requirements for process-control systems [6, 8]. En-
gineers have made the criteria into checklists and used them on a variety of

applications, such as radar systems, the Japanese module of the Space Sta-

tion, and review criteria for FDA medical device inspectors. Two goals for

SpecTRM-RL are to determine (1) how to enforce as many of the constraints

as possible in the syntax of the language and (2) how to design the language
to enhance the ability to manually check or build tools to automatically check

the specifications for the criteria that cannot be enforced by the language
design itself.

This paper describes what we have learned from our experimentation with

the design of SpecTRM-RL about achieving the first four goals. Our results

for the fifth goal will be described in a future paper. The design features of

SpecTRM-RL that support each of these goals are described but a complete

description of the language, including its syntax, is beyond the scope of this

paper. We are currently producing a SpecTRM-RL language design manual and

automated tools to assist in experimental use of the language.

2 Enhancing Usability and Reviewability

The primary goal for the design of a specification language should be to make

the representation appropriate for the tasks to be performed by the users, i.e., to

make the design user-centered (rather than designed primarily to make analysis

easier or to be faithful to standard mathematical conventions). Software is a

human product and specification languages are used to help humans perform

the various problem-solving activities involved in software engineering. Our goal

is to provide specifications that support human problem-solving and the tasks
that humans must perform in software development and evolution as well as

to allow automated analysis. We attempt to support human problem-solving

by grounding specification design on psychological principles of how humans use

specifications to solve problems as well as on basic system engineering principles.

Wediscusstwoof theseaspectshere:minimizingsemanticdistance(problem1
above)andbuildingblackboxspecifications(problem2above).Problems3and
4, astheyreflectonthedesignofSpecTRM-RL,arediscussedin latersections
of thispaper.

Animportantpsychologicalprincipleforenhancingreviewabilityis thecon-
ceptofsemanticdistance[5].Wedefineaninformalconceptof semantic distance,
similar to Norman's use of the term, as the amount of effort required to translate

from one model to another. We believe that in order to maximize the application

expert's ability to find errors in a requirements specification, the semantic dis-
tance between their understanding of the required process control behavior (their

mental model of the system) and the specification of that behavior must be min-

imized. This, in turn, implies that the requirements be written entirely in terms

of the components and state variables of the controlled system. Specifically, "pri-
vate" variables and procedures (functions) related only to the implementation of

the requirements and not part of the application expert's view of the controlled

system should not be used. That is, the specification should be black box.

A blackbox model of behavior permits statements and observations to be

made only in terms of outputs and the inputs that stimulate or trigger those

outputs. The model does not include any information about the internal design

of the component itself, only its externally visible behavior. The overall system
behavior is described by the combined behavior of the components, and the

system design is modeled in terms of these component behavior models and the
interactions and interfaces among the components.

When the description of the required controller behavior includes more than

just its blackbox behavior (e.g., it includes software design information), then the
semantic distance between the required process-control behavior and the spec-
ified controller behavior increases and the relationship between them becomes

more difficult to validate (dl vs. d4 in Figure 1). In fact, if adequately efficient

code can be generated from the requirements specification directly, then an in-

ternal design specification may never be needed. "Adequately efficient" must be
determined for each specific application's timing requirements. We are working

on this code-generation problem [7].

In addition, the requirements review process involves validating the rela-

tionship between changes in the real-world process and the specified changes

and response in the control function model. Therefore, reviewability will be en-

hanced if the requirements specification explicitly shows this relationship. We

discuss this further in the next section.

Blackbox requirements specification languages not only enhance readability

and reviewability, but they also simplify the transition from system requirements

and system design to software requirements. The gap between system design and
software requirements is frequently cited as a major problem in our interactions

with industry. We believe some of the problem stems from the fact that software

requirements often contain a lot of software design decisions, which makes the

gap between the two specifications larger and more complex to negotiate.

." 4

"'4.4.

U'r'Oe°'atr oe.on Model of Desired ___.J Specification
Process-Control I al I of Controller i-_ Specification

Behavior J L Behavior ;r

Implementation

.r

"-- d5 .."

Fig. 1. Reviewability increases as the semantic distance between the user's mental
model of the desired behavior and the specification (dl vs. d4) decreases.

2.1 Minimizing Semantic Distance

Our language is designed primarily for process-control systems. Therefore we

attempt to minimize the semantic distance dl by basing the specification lan-

guage design on fundamental process control principles. In process control, the

goal is to maintain a particular relationship or function F over time (t) between

the input to the system I, and the output from the system Os in the face of
disturbances D in the process (see Figure 2). This system function consists of the

functional description and the set of constraints on the system [11]. At any mo-

ment, there is a unique set of relationships between inputs and outputs whereby

each output value will be related to the past and present values of the inputs and
time. These relationships will involve fundamental chemical, thermal, mechani-

cal, aerodynamic, or other laws as embodied within the nature and construction

of the system. The system is constructed from components whose interaction

implements F including, usually, a controller or controllers whose function is to

ensure that F is correctly achieved.

A typical process-control system can be divided into four types of compo-

nents: the process, sensors, actuators, and controller (see Figure 2). -

Process: The behavior of the process is monitored through controlled variables

(Vc) and controlled by manipulated variables (12m). The process can be de-
scribed by the process function Fp, a mapping from Vm x Is x D x t -4 O8 x Vc.

Sensors: These devices are used to monitor the actual behavior of the process

by measuring the controlled variables. For example, a thermometer may
measure the temperature of a solvent in a chemical process or a barometric

altimeter may measure altitude of an aircraft above sea level. The sensor

function Fs maps Vcx t _ 1;.

Actuators: These are devices designed to manipulate the behavior of the pro-

cess, e.g., valves controlling the flow of a fluid or a pilot changing the direction
and speed of an aircraft. The actuators physically execute commands issued

by the controller in order to change the manipulated variables. The func-

tionality of the actuators is described by the actuator function FA mapping

O x t --+ V,,,.

System Input i

_ ,
i
i
i
i
i

,,

Manipulated variables

V.

ActuatorsA I

Output

o

Disturbances

D

ProceSSp J

Controller
C

Command Signal

c

Controlled VariableSwc

SensorsS

I < lnpu!l

System Output

0 s

Fig. 2. Basic Process Control Loop

Controller: The controller is an analog or digital device used to implement the
control function. The functional behavior of the controller is described by

a control function (Fc) mapping 7: × C × t -_ O, where C denotes external

command signals. The process may change state not only through inter-
nal conditions and through the manipulated variables, but also by distur-

bances (7)) that are not subject to adjustment and control by the controller.

The general control problem is to adjust the manipulated variables so as to

achieve the system goals despite disturbances. Feedback is provided via the
controlled variables in order to monitor the behavior of the process. This

feedback information (along with external command signals C) can be used
as a foundation for future control decisions as well as an indicator of whether

the changes in the process initiated by the controller have been achieved.

To reason about this type of process-controlled system, Parnas and Madey

defined what they call the four-variable model [14]. This model is essentially an

abstraction of part of the traditional feedback process control model presented

here. The approach to modeling used in Parnas Tables [13] and SCR [4, 3] are
based on this four variable model and, thus, built upon this same classic process

control model.

The model presented in this section is an abstraction--responsibility for im-

plementing the control function may actually be distributed among several com-

ponents including analog devices, digital computers, and humans. Furthermore,
the controller may have only partial control over the process--state changes in

the process may occur due to internal conditions in the process or because of

external disturbances or the actuators may not perform as expected. For exam-

ple, the pilot in a TCAS system may not follow the resolution advisory (escape

maneuver) issued by the TCAS controller.

Thepurposeof a controlsystemrequirementsspecificationis to definethe
systemgoalsandconstraints,thefunctionFc (i.e., the required blackbox be-

havior of the controller), and the assumptions about the other components of

the process-control loop that (1) the implementors need to know in order to

implement the control function correctly and (2) the system engineers and ana-

lysts need to know in order to validate the model against the system goals and
constraints.

A blackbox, behavioral specification of such a system function Fc uses only:

(1) the current process state inferred from measurements of the controlled vari-

ables,

(2) past process states that were measured and inferred,

(3) past corrective actions output from the controller, and

(4) prediction of future states of the controlled process

to generate the corrective actions (or current outputs) needed to maintain F.
All of this information can be embedded in a state-machine model of the

controlled process, and we specify the blackbox behavior of the controller (i.e.,
the function Fc to be computed by the controller) using such a state machine

model. In SpecTRM-RL models, the outputs of the controller are specified with

respect to state changes in the model as information is received about the current
state of the controlled process via the controlled variables Yc. In the TCAS

example, the control function is specified using a model of the state of all other
aircraft within the host aircraft's airspace, the state of the on-board components

of its own aircraft (e.g., altimeters, aircraft discretes 1, cockpit displays), and the

state of ground-based radar stations in the vicinity. Information about this state
is received from the sensors (e.g., antennas and transponders) and commands

are sent to the actuators (e.g., the pilot and transponders).
The state machine model of the control function must be iteratively fine

tuned during requirements development to mimic the current understanding of

the real-world process and the required controller behavior. The state machine

is essentially an abstraction of the behavior of the system function because it

models all the relevant aspects of the components of the process control loop.
Errors in the state machine model represent mismatches between this model and

the desired behavior of the control loop, including the process.

3 Building Blackbox Specifications in SpecTRM-RL

Although RSML allows blackbox behavior specifications, the language itself

does not encourage or enforce them. We found people tend to include design

in the specification when using general state-machine modeling languages such

as RSML or Statecharts. SpecTRM-RL, therefore, was not designed to be a

general modeling language, but rather specifically designed to create blackbox

1 Aircraft discretes are airframe-specific characteristics provided as input to TCAS
from hardware switches.

requirementsspecificationsto defineaninput/outputprocess-controlfunction,
asisalsotrueofSCRandParnasTables.Generalmodelingfeaturesnotneeded
for blackboxspecificationsarenotincludedin SpecTRM-RL,andnewabstrac-
tions(suchasmodes)areincludedthat assistin blackboxmodelingof control
systemcomponents.Thus,SpecTRM-RLis not just anothervariantof Stat-
echartsalthoughtherearesomesuperficialsimilarities.LikeSCRandParnas
Tables,SpecTRM-RLenforcesthespecificationof an input/output process con-

trol function. Statecharts allows much more general models to be built.

In order to make our language formal enough to be analyzable (and yet read-

able and reviewable by non-mathematicians), we have defined a formal model

(RSM or Requirements State Machine) that underlies a more readable specifi-

cation language or languages. The RSM is a general behavioral model of the
required control function with the components of the state machine mapped to

the appropriate components of the control loop. This model has been published

previously [6], and we do not refer to it further in this paper. We note only that
the underlying model is a Mealy automaton, as is the model for SCR, Parnas

Tables, Statecharts, and most other languages based on state-machines.

The higher-level specification language based on this underlying model must

allow the modeler to specify the required process-control function Ft. Figure

3 shows a more detailed view of the components of the control loop, including

distinguishing between human and automated controllers.

All control software (and any controller in general) uses an internal model of

the general behavior and current state of the process that it is controlling. This

internal model may range from a very simple model including only a few variables

to a much more complex model with a large number of state variables and

transitions. The model may be embedded in the control logic of an automated

controller or in the mental model maintained by a human controller. It is used

to determine what control actions are needed. The model is updated and kept

consistent with the actual system state through various forms of feedback.

The design of SpecTRM-RL is influenced by our desire to perform safety

analysis on the models. When the controller's model of the system diverges from

the actual system state, erroneous control commands (based on the incorrect

model) can lead to an accident--for example, the software does not know that

the plane is on the ground and raises the landing gear or it does not identify an

object as friendly and shoots a missile at it. The situation becomes more compli-
cated when there are multiple controllers (both human and automated) because

their internal system models must also be kept consistent. In addition, human

controllers interacting with automated controllers must also have a model of the
automated controllers' behavior in order to monitor or supervise the automation

as well as the controlled system itself.

One reason the models may diverge is that information about the process

state has to be inferred from measurements. For example, in TCAS, relative

range positions of other aircraft are computed based on round-trip message prop-

agation time. Theoretically, the function Fc can be defined using only the true
values of the controlled variables or component states (e.g., true aircraft, pc)-

Processinputs
ControlledI

variables/

I Actuators

Disturbances

ControlledProcess

Automated
Controller

(Assistant)

Internal model

of process

Controller

Operating Modes

Internal model

of supervisory
interface

> Process outputs

Measured
variables

Sensors I

)isplays Contrc

Sulnarl

Supervisor(s)

(Controller(s))

Internal model

of process

Internal model

of automation

Fig. 3. A basic control loop. A blackbox requirements specification captures the con-
troller's internal model of the process. Accidents occur when the internal model does
not accurately reflect the state of the controlled process.

10

sitions).However,at anytime,thecontrollerhasonlymeasuredvaluesof the
componentstates(whichmaybesubjecttotimelagsormeasurementinaccura-
cies),andthecontrollermustusethesemeasuredvaluesto inferthetruecon-
ditionsin theprocessandpossiblyto outputcorrectiveactions(O)to maintain
F. In the TCAS example, sensors include on-board devices such as altimeters

that provide measured altitude (not necessarily true altitude) and antennas for

communicating with other aircraft. The primary TCAS actuator is the pilot,

who may or may not respond to system advisories. Pilot response delays are

important time lags that must be considered in designing the control function.

Time lags in the controlled process (the aircraft trajectory) may be caused by

aircraft performance limitations.

The automated controller also has a model of its interface to the human

controllers or its supervisor(s). This interface, which contains the controls, dis-

plays, alarm annunciators, etc. is important because it is the means by which the

two controllers' models are synchronized. Each of these components is included

explicitly in our models and modeling language. We represent the controlled pro-

cess and supervisory interface models using state machines and define required
behavior in terms of transitions in this machine. The controller outputs (com-

mands to the actuators) are specified with respect to state changes in the model
as information is received about the current state of the controlled process via

controlled variables read by sensors.

Automated Controller Model

Operating Modes

Supervisory Interface

Supervisory modes

Controls

Displays

Controlled Process Model

Process Operating Modes

State Variables

Process Interface Variables (measured
and manipulated variables)

Fig. 4. A SpecTRM-RL model has three parts.

11

Thusa SpecTRM-RLspecificationof controlsoftwareiscomposedof three
interrelatedmodels(Figure4):(1)aspecificationoftheoperatingmodesofthe
controller,(2)aspecificationofthecontrollers'sviewofitssupervisoryinterface
(thecomponentorcomponents,includinghumanoperators,that arecontrolling
it), and(3)amodelofthecontrolledprocess.

3.1 The Structure of a SpecTRM-RL Specification

Engineers often use modes in describing required system functionality. Mode
confusion also is frequently implicated in the analysis of operator errors that lead

to accidents. We have included in SpecTRM-RL the ability to describe behavior
in terms of modes both to reduce semantic distance (and enhance reviewability)

and to allow for analysis of various types of mode-related errors [10].

A mode can be defined as a mutually exclusive set of system behaviors.

For example, the following table shows the possible transitions between states

in a simple state machine given two system modes: startup mode and normal

operation mode.

mode:: s2 s3 sa s_Staxtup s2 s4 s5 sl

Normal mode s3 s4 st s_ st
Table 1. A simple state machine with two modes defined using a standard state
transition table. The states in the machine (listed at the top of the table) are sl

through s_ while the conditions under which the transition is made are listed on the
left (e.g., startup mode and normal mode). Note that transitions may depend on more
conditions than simply the current processing mode.

The startup and normal processing modes in this machine determine how the
machine will behave over the entire set of state transitions. For example, if the

conditions occur that trigger a transition from state s3, the machine will transfer

to state s4 if it is in startup mode or to state sl if it is in normal-processing

mode. Note that modes are simply states that play a particular role in the

state machine behavior (i.e., control a sequence or set of state transitions). That

is, they are a convenient abstraction for describing and understanding complex

system behavior, but they do not add any power to the state machine description.

In general, state transitions may be triggered by events, conditions, or simply

the passage of time. The current operating mode determines how these triggers
will be interpreted and what transitions will be taken. Note that there is no

real difference between a state and a mode by this definition. Any conditions or

states could be labelled a "mode" (which indeed is done in some specification

languages), although this is not very helpful and is not the way engineers use
the term "mode".

Modern aircraft and other complex systems often have a large number of

operating modes and possible combinations of operating modes. In the modeling

and analysis of control systems, we find it useful to distinguish between three

different types of modes:

12

1. Supervisory modes determine who or what is controlling the component at
any time. Control loops may be organized hierarchically, with multiple con-

trollers or components, each being controlled by the layer above and con-

trolling the layer below. In addition, each component may have multiple

controllers (supervisors). For example, a flight control computer in an air-

craft may get inputs from the flight management computer or directly from

the pilot. Required behavior may be different depending on what supervi-

sory mode is currently in effect. Mode-awareness errors related to confusion

in coordination between the multiple supervisors of a control component can

be defined in terms of these supervisory modes.

2. Component operating modes control the behavior of the control component

itself. They may be used to control the interpretation of the eomponent's

interfaces or to describe the component's required process-control behavior.

3. Controlled-system (or plant in control theory terminology) operating modes

specify sets of related behaviors of the controlled system and are used to

indicate its operational state. For example, an aircraft may be in takeoff,

climb, level-flight, descent, or landing mode.

The use of modes does not violate the b|ackbox nature of SpecTRM-RL; they

represent externally visible behavior (required functionality) of the component

and not the internal design of the software to achieve that functionality. For

example, capture mode (which can be armed or not armed) in the flight man-

agement system example shown in Figure 5 indicates whether the aircraft will

automatically level off when a pilot-specified altitude constraint is reached. The
pilot is responsible for setting the altitude constraint and (usually) for directly

or indirectly selecting capture mode.

As stated earlier, a SpecTRM-RL specification has three interrelated models.

The top box of Figure 5 shows the graphical part of an example specification of

a flight management system. The system has seven modes of operation, all of

which have only one value at any one time. The boxes shown under each mode
label represents the discrete values for that mode, e.g., pitch can be'in altitude

hold, vertical speed, indicated air speed, or altitude capture mode. The line at the

left of the choices simply groups the choices under the variable and indicates

that only one may be active at any time and does not represent state transitions

(as it did in RSML).

A second part of a SpecTRM-RL model is a specification of the component's

view of its supervisory interface. The supervisory interface consists of a model of

the operator controls and displays or other means of communication by which the

component relays information to the supervisor. Note that the interface models

are simply the view that the component has of the interfaces--the real state of

the interface may be inconsistent with the assumed state due to various types

of design flaws or failures. For example, a flight control computer in an aircraft

may get inputs from the flight management computer or directly from the pilot.
Required behavior may be different depending on what supervisory mode is

currently in effect. By separating the assumed interface from the real interface,

we are able to model and analyze the effects of various types of errors and

13

AUTOFLIGHT

OPERATING
MODES

Autothrottle Aut_0Uot Thrust Arm Roll

_._c_ __ i I ' ' ¸__¸• .,, I I Unknown _" _
[OPER.A_G [Descending] Leveling

L MODEs o_

/URCRAFr

COMPONEN T
MODELS

S_ts Flaps E_

Retracted

Unknown

o

Fig. 5. Example of operating modes for a flight management system

14

failures (e.g., communication errors or display hardware failures). In addition,

separating the physical design of the interface from the logical design (required
content) will facilitate changes and allow parallel development of the software

and the interface design.

The third part of a SpecTRM-RL model is the component's model of the

controlled system (plant). The description of a simple component may include

only a few relevant state variables. If the controlled process or component is

complex, the model of the controlled process may itself be represented in terms

of its operational modes and the states of its subcomponents. In a hierarchical

control system, the controlled process may itself be a controller of another pro-

cess. For example, the flight management system may be controlled by a pilot
and may itself issue commands to a flight control computer, which issues com-

mands to an engine controller. If, during the design process, components that

already exist are used, then those plug-in component models could be inserted
into the SpecTRM-RL process model.

If the SpecTRM-RL model is of a non-control component (e.g., a radar data
processor), there might not be a supervisory interface. There will still be oper-

ating modes, however, and a model of the required input-output function to be

computed by the component.

The language itself consists of a graphical model of the state machine, out-

put message specifications, state variable definitions, operator interface variable

definitions, state transition specifications, macros, and functions.

Graphical State Machine. The SpecTRM-RL notation is driven by the use

of the language to define a function from outputs to inputs. SpecTRM-RL has a

greatly simplified graphical representation (compared to RSML or Statecharts),

which is made possible because we eliminated the types of state machine com-

plexity necessarily for specifying component design but not necessary to specify

the input/output function computed in a pure blackbox requirements specifica-
tion. The architecture of the state transitions becomes so simple that we found

no need to represent it in the graphical state machine---the transitions simply

represent the changes between state variable values.

State values in square boxes represent inferred values. Inferred values are

not input directly but represent the aspects of the process state model that

must be inferred from measurements of monitored process variables. Inferred

process states are used to control the computation of the control function. They
are necessarily discrete in value 2, and thus can be represented as a finite state

variable. In practice, such state variables almost always have only a few relevant

values (e.g., altitude below 500 feet, altitude between 500 feet and 10,000 feet,

altitude above 10,000 feet). State values denoted as circles or ovals represent

direct input and output values (controlled or monitored variables).

2 If they are not discrete, then they are not used in the control of the function computa-
tion but in the computation itself and can simply be represented in the specification
by arithmetic expressions involving input variables.

15

Thesupervisoryinterfacemodelshowsthesupervisorymode,whichdescribes
howthis computeris beingsupervised,e.g.,by a human,computer,or both
(Figure6). It alsoshowsthestateof thecontrolsandthedisplays(including
oralannunciations,etc.).

SUPERVISORY INTERFACE

I SUm WSORV " iiiil
, ' ,-. . , .

) A_oam_e AltNold VcrtSpeed

G

"DISPLAYS

Tlmm Arm Roll Pitch

-L " "

Fig. 6. Example of SpecTRM-I_L model of the supervisory modes

Output Message Specification. Everything starts from outputs in SpecTRM-

RL. By starting from the output specification, the specification reader can de-

termine what inputs trigger that output and the relationship between-the inputs

and outputs. RSML did not explicitly show this relationship (although it could

be determined, with some effort, by examining the specification). A simplified

example is shown in Figure 7. More information is actually required by our com-
pleteness criteria than is shown in the example, for instance, specification of

timing assumptions related to the message.

The conditions under which an output is triggered (sent) is simply a predi-

cate logic statement over the various states, variables, and modes in the specifi-

cation. During the TCAS project, we discovered that the triggering conditions
required to accurately capture the requirements were often extremely complex.

The propositional logic notation traditionally used to define these conditions

did not scale well to complex expressions and quickly became unreadable (and

error-prone). To overcome this problem, we decided to use a tabular represen-

tation of disjunctive normal form (DNF) that we call AND/OR tables. We have
maintained this successful notation in SpecTRM-RL. The far-left column of the

AND/OR table lists the logical phrases. Each of the other columns is a conjunc-

16

tion of those phrases and contains the logical values of the expressions. If one

of the columns is true, then the table evaluates to true. A column evaluates to

true if all of its elements match the truth values of the associated predicates. A

dot denotes "don't care."

] Output Message }

Resolution Advisory

TRIGGERING CONDITION

]C°mp°site-RA'266 in state RA 1_
Traffic-Display-Statuss.t4 _ in state Waiting-To-Send

MESSAGE CONTENTS

FIELD VALUE

Bits 11-17 Own-Goal-Altitude-Rat%.219

Bits 18-20 Combined-Controlv.22 r

Bits 21-23

Bits 24-26

Bits 27-29

Vertical-Control_._ I

Climb-RA_.233

Descent-RAy_235

Fig. 7. Example of SpecTRM-RL output message specification

The subsecripts in the specification represent whether the value is a variable

(v) or a state (s). The other alternatives, macros (m) and functions (f) are

described later in this paper. The number attached to the subscript is the page

on which the variable, state, macro, or function is defined.

State Variable Definition. State variable values come from inputs or they

may be computed from such input values or inferred from other state variable

values. Figure 8 shows a partial example of a state variable description. Again,

our desire to enforce completeness requires that state variable definitions in-

clude such information as arrival rates, exceptional condition handling, data age

requirements, feedback information, etc. not shown here.

SpecTRM-RL requires all state variables that describe the process state to

include an unknown value. This value is the default value upon startup or upon

specific mode transitions (for example, after temporary shutdown of the com-

puter). This feature is used to ensure consistency between the computer model

of the process state and the real process state by forcing resynchronization of

the model with the outside world after an interruption of processing. Many acci-

dents have been caused by the assumption that the process state does not change

17

[State [

Supervisory-lnterface

t_.>Pilot-Displays

Resolution-Advisory

_+Vertical-Control

DEFINITION

= Blank

[INITIALLY]

= Other

Some RA-Strengths.277 in state Increase-2500fpm

Some Reversals.2s 2 in state Reversed

Composite-RAs.266 in state Climb

Composite-RAs_266 in state Descend

Corrective-Climbm_263 in state Yes

Corrective-Descends.264 in state Yes

Crossing-GeometrYm.3S s

= Increase

Some RA-Strengths._,77 in state Increase-2500fpm

Climb-Inhibit ,43 in mode Inhibited

[Descend-Inhibits _4s in mode Inhibited

= Crossing

Some Reversal_.2S: in state Reversed

Composite-RA.z66 in state Climb

Composite-RAs.266 in state Descend

Some RA-Strengths.277 in state Increase-2500fpm

Corrective-Climbs.26 _ in state Yes

Corrective-Descend_.2_ in state Yes

Crossing-GeometrYm4s¢

= Maintain

Composite-RAs.266 in state Climb

Some RA-Strength s 277 in state Increase-25OOfpm

Composite-RA,_26 _ in state Descend

Corrective-Climb_ _63 in state Yes

I C°rrective-Descends-;c_ in state Yes

= Reversal

[Some Reversal_.282 in state Reversed

Composite-RAs.266 in state Climb

Composite-RAs.266 in state Descend

Corrective-Climbs.263 in state Yes

Corrective-Descendvz6, in state Yes

F

F

F

F F

F F

F •

• F

F F

F -

F

T T T

F • •

F • •

T • T

• • T

Fig. 8. Example of SpecTRM-RL state variable specification

18

while the computer is not processing inputs or by incorrect assumptions about
the initial value of state variables.

Unknown is used for state variables in the supervisory interface model only

if the state of the display can change independently of the software. Otherwise,

such variables must specify an initial value (e.g., blank, zero, etc.) that should

be sent when the computer is restarted.

In the example shown, vertical control is a state variable in the supervisory

interface model and is one of the pieces of information displayed to the pilot as

part of an RA (Resolution Advisory, which is the escape maneuver the pilot is

to implement to avoid the intruder aircraft). Vertical control can have the values

Unknown, Other, Increase, Crossing, Maintain, or Reversal. AND/OR tables are

used to specify which of these values is displayed to the pilot (given the current

state of the aircraft model and the intruder aircraft being avoided). For example,
Maintain is displayed if the Composite-RA state variable is in state "Climb",

there is no RA-Strength in state "Increase-2500fpm", and Corrective-Climb and

Corrective-Descend are both not in state "yes" or Maintain is displayed if there

is no RA-Strength in state Increase-2500fpm, Composite RA is in state Descend,

and again both Corrective-Climb and Corrective-Descend are not in state "yes."

Timing constraints may also be specified as conditions in the tables (i.e., condi-

tions on the state transitions) but are not required in this example.

State Transition Specification. As with all state-machine models, transitions

in the three parts of a SpecTRM-RL model are governed by external events and
the current state of the modeled system. In SpecTRM-RL, the conditions under

which transitions are taken are specified separately from the graphical depiction

of the state machine. We have found that the behavior of real systems is too

complex to write on a line between two boxes. Instead, we again use AND/OR

tables. Figure 9 shows an example specification for a transition.

Macros and Functions. Macros are simply named pieces of AND/OR ta-

bles that can be referenced from within another table. For example, the macro

in Figure 10 is used in the definition of the variable Vertical-Control in Fig-
ure 8. The macros, for the most part, correspond to typical abstractions used

by application experts in describing the requirements and therefore add to the

understandability of the specification. In addition, the abstraction is necessary

to handle the complexity of guarding conditions in larger systems and we found
this a convenient abstraction to allow hierarchical review and understanding of

the specification. Also, rather than including complex mathematical functions

directly in the transition tables, functions are specified separately and referenced

in the tables. For instance, Own-Tracked-Alt in Figure 9 is a function reference.

The macros and function, as well as the concept of parallel state machines, not

only help structure a model for readability; they also help us organize models to
enable specification reuse. Conditions commonly used in the application domain

can be captured in macros and common functions, such as tracking, can be

captured in reusable functions. In addition, the parallel state machines allow

19

I Mode
Own-Aircraft-Operating-Modes

[Climb
)

[Inhibit [[

I') o'!own'' [Inhibi!ed.

DEFINITION

INITIALLY --_ Unknown

Unknown, Not-Inhibited --->Inhibited

Composite-RAs_266 in state No-RA

Altitude-Climb-Inhibitv.259 = True

Own-Tracked-Altf.,s 7 > Aircraft-Altitude-Limitv.259

Config-Climb-Inhibitv.259 = True

Unknown, Inhibited ----_Not-lnhibited

Composite-RAs_266 in state No-RA

Altitude-Climb-Inhibitv.2s 9 = True

Own-Tracked-Altf.4s 7 > Aircmfi-Altitude-Limit_.2s 9

Config-Climb-Inhibit_.259 = True

Fig. 9. Example of SpecTRM-RL mode or state transition specification

2O

theinternalmodelof eachsystemcomponent(discussedin Section3) andthe
differentsystemmodesto becapturedasseparateandparallelstatemachines.
Thishelpstoaccommodatereuseofinternalmodelsandoperationalmodes,and
helpsusplanforproductfamilies(researchgoal4 intheintroduction).Naturally,
to accomplishreuse,carehasto betakenwhencreatingtheoriginalmodelto
determinewhatpartsarelikelyto changeandto modularizethesepartssothat
substitutionscanbeeasilymade.Thisstructuring,however,isbeyondthescope
of the current paper.

t Macro t

Crossing-Geometry

DEFINITION

Some Crossings.2s o in state lnt-CrossSome Crossings.28 o in state Own-Cross

Fig. 10. Example of SpecTRM-RL macro specification

4 Eliminating Internal Broadcast Events

A third goal for SpecTRM-RL was to eliminate error-prone constructs. Dur-

ing the independent verification and validation (IV&V) of TCAS II, problems

with internal broadcast events (used to synchronize parallel state machines in

Statecharts and RSML) accounted for a clear majority of the errors related to
the syntax and semantics of RSML. Common and difficult to resolve problems

involved proper synchronization of mutually interdependent state machines. In

addition, getting the state machines to correctly model system startup behav-

ior proved to be surprisingly difficult. Internally generated events seem to cause

"accidental complexity" in the specification that is not necessarily present in the

problem being specified.

These problems were not just the most common language-related problems in

the initial specification, they were also the problems that lingered unresolved (or

incompletely resolved) through several cycles of corrections and repeated IV&V.

Note that the problems related to synchronization were not directly caused by

misunderstandings of the RSML event/action semantics; the event/action mech-

anism is quite simple and purposely selected to be intuitive [9]. Instead, the prob-
lems were caused by the complexity of the model and the inherent difficulty of

comprehending the causal relationships between parallel state machines. Thus,

this difficulty is not unique to RSML, it is fundamentally difficult to understand

parallelism and synchronization. Other state-based languages such as Statecharts

21

[1] and the UML behavioral (state machine) models that use event/action se-

mantics are likely to encounter the same problem when used to model complex

systems. When we eliminated internal events, we were surprised at how much

easier it was to rewrite our old specifications (such as TCAS II) and to create
new ones.

The trigger events and actions on the transitions in Statecharts and RSML

are used for two purposes. First, they are used to sequence and synchronize

state machines so the next state relation is computed correctly. For instance,

to determine if an intruding aircraft is a collision threat in TCAS II, we must
first determine how close the intruder is and how close the intruder is allowed to

come before it is considered a threat. Thus, the state variables determining the
intruder status and the sensitivity level of TCAS II must be evaluated before we

determine advisory-status. This is a straightforward (but as mentioned above,

error prone) use of events and actions.

Second, events and actions may be employed to use, in essence, the state

machines as a programming language. The events can be used to create loops

and counters, and events can be implicitly assigned semantic meaning and used

for purposes other than synchronization. In our experience we have found this

freedom of using the events a trap that invites the introduction of design details

in the specification. During the development of the TCAS II model we had to

repeatedly remind ourselves to use events prudently; we have found that even

experienced users of such modeling languages inevitably fall into the trap of

using events and actions to introduce too much design in the models.

To solve this problem in SpecTR.M-RL, we simply decided not to use internal

events and instead to rely on the data dependencies in the model to determine

the order in which transitions are taken, i.e., the ordering, if critical, is explicitly

included in the model as opposed to being built into the semantics of the mod-

eling language. In this way, the reviewer need not rely on knowledge about the

semantics of the modeling language to determine if the model correctly matches

the intended functional behavior--that behavior (which state transit, ions follow

which) is explicitly specified in the constructed model. A similar argument holds
for the modeler. We found that different reviewers of our TCAS specification

were assigning differing semantics to the state transition ordering. In the ex-

ample above, the transitions in the state machine advisory status refer to the

states of intruder status and sensitivity level; thus, intruder status and sensitiv-

ity level will be evaluated before advisory status. This sequencing will assure a

correct evaluation of the next state relation based on the data dependencies of

the transitions and variables. The next state function is recomputed every time

the environment changes an input variable. Naturally, a SpecTRM-RL specifica-
tion cannot include any cycles in the data dependencies. Cycles in a specification

can be easily detected by our tools.

In Statecharts and RSML, a transition is not taken until an explicit event is

generated. When the transition is taken, additional events may be generated as

actions. In this way, the events propagate through the state machine triggering

transitions. In our formalization of the semantics of RSML [2] we view each

22

transitionasa simplefunctionmappingonestateto thenext.Theeventsand
actionsonthetransitionsareusedto determineinwhichorderweshallusethese
functionsto computethenextstate.Wedefinethenewsemanticsof SpecTRM-
RL in essentiallythe samewayasfor RSML.Theonlydifferenceis howwe
determinein whichorderto applythe functionsrepresentingtransitions.We
nowrelyentirelyonthedatadependenciesbetweenthetransitionsto determine
a partialorderthat isusedduringthecomputationof thenextstaterelation.
ThesemanticsofSpecTRM-RLhavebeendefinedformally,but thisdefinition
isnot includedforspacereasons.

5 Conclusions

In this paper, we described some lessons learned during experimentation with a

formal specification language (RSML) and how we have used what we learned
to drive further research. We showed how a formal modeling language can be

designed to assist system understanding and the requirements modeling effort.
We achieve this by grounding the design of the language in the domain for

which it is intended (process control) and how people actually think about and

conceptualize complex systems.

We have applied these principles to the design of a new experimental lan-

guage called SpecTRM-RL. As mentioned above, SpecTRM-RL evolved from

our previous experiences with using RSML to specify large and complex systems.

In particular, we addressed the problems associated with inclusion of excessive

design in the blackbox specification and internal broadcast events. Our expe-
rience thus far indicates that the new language design principles introduced in

SpecTRM-RL greatly enhance the usability of a formal notation.

References

Statecharts: A visual formalism for complex systems. Science of Com-

puter Programming, pages 231-274, 1987.
Mats P. E. Heimdahl and Nancy G. Leveson. Completeness and consistency in
hierarchical state-base requirements. IEEE Transactions on Software Engineering,

pages 363-377, June 1996.
3. C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw. Automated consistency checking

of requirements specifications. ACM Transactions of Software Engineering and

Methodology, 5(3):231-261, July 1996.
4. K.L. Heninger. Specifying software requirements for complex systems: New tech-

niques and their application. IEEE Transactions on Software Engineering, 6(1):2-
13, Januazay 1980.

5. Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. Direct manipulation
interfaces. Human-Computer Interaction, 1:311-338, 1985.

6. Matthew S. Jaffe, Nancy G. Leveson, Mats P.E. Heimdahl, and Bonnie E. Mel-
hart. Software requirements analysis for real-time process-control systems. IEEE
_D-ansac_ions on Software Engineering, 17(3):241-258, March 1991.

23

7. D.J. Keenan and M.P.E. Heimdahl. Code generation from hierarchical state ma-

chines. In Proceedings o] the International Symposium on Requirements Engineer-

ing, 1997.

8. N.G. Leveson. Safeware: System Safety and Computers. Addison Wesley, 1995.

9. N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. Requirements spec-

ification for process-control systems. IEEE Transactions on Software Engineering,

pages 684-706, September 1994.

10. N.G. Leveson, J.D. Reese, S. Koga, L.D. Pinnel, and S.D. Sandys. Analyzing re-

quirements specifications for mode confusion errors. In Proceedings of the Workshop

on Human Error and System Development, 1997.

11. E.I. Lowe. Computer Control in Process Industries. Peregrinus, 1971.

12. Robyn R. Lutz. Targeting safety related errors during software requirements anal-

ysis. Journal of Systems Software, 34(3):223-230, September 1996.

13. David L. Parnas. Tabular representations of relations. Technical Report CLR

report No. 260, McMaster University, Hamilton, Ontario, October 1992.

14. David L. Parnas and Jan Madey. Functional documentation for computer sys-

tems engineering (volume 2). Technical Report CRL 237, McMaster University,

Hamilton, Ontario, September 1991.

Intent Specifications: An Approach to Building

Human-Centered Specifications *

Nancy G. Leveson

Dept. of Computer Science and Engineering

University of Washington

Abstract. This paper examines and proposes an ap-

proach to writing software specifications, based on re-
search in systems theory, cognitive psychology, and

human-machine interaction. The goal is to provide spec-

ifications that support human problem solving and the

tasks that humans must perform in software develop-

ment and evolution. A type of specification, called in-

tent specifications, is constructed upon this underlying
foundation.

1 The Problem

Software is a human product and specification languages

are used to help humans perform the various problem-

solving activities involved in requirements analysis, soft-

ware design, review for correctness (verification and val-

idation), debugging, maintenance and evolution, and

reengineering. This paper describes an approach, called
intent specifications, to designing system and software

specifications that potentially enhances human process-

ing and use by grounding specification design on psy-
chological principles of how humans use specifications

to solve problems as well as on basic system engineering

principles. Using such an approach allows us to design

specification languages with some confidence that they
will be usable and effective.

A second goal of intent specifications is to integrate for-

mal and informal aspects of software development and
enhance their interaction. While mathematical tech-

niques are useful in some parts of the development pro-
cess and are crucial in developing software for critical

systems, informal techniques will always be a large part

(if not most) of any complex software development ef-
fort: Our models have limits in that the actual sys-

tem has properties beyond the model, and mathemati-

cal methods cannot handle all aspects of system devel-

opment. To be used widely in industry, our approach to

specification must be driven by the need (1) to system-

atically and realistically balance and integrate math-

*This work was partially supported by NASA Grants NAG-I-
1495 and NAG-I-2020 and by NSF Grant CCR-9396181.

ematical and nonmathematical aspects of software de-

velopment and (2) to make the formal parts of the spec-

ification easily readable, understandable, and usable by

everyone involved in the development and maintenance

process.

Specifications should also enhance our ability to engi-

neer for quality and to build evolvable and changable

systems. Essential system-level properties (such as

safety and security) must be built into the design from

the beginning; they cannot be added on or simply mea-

sured afterward. Up-front planning and changes to the

development process are needed to achieve particular

objectives. These changes include using notations and

techniques for reasoning about particular properties,

constructing the system and the software in it to achieve

them, and validating (at each step, starting from the
very beginning of system development) that the evolv-

ing system has the desired qualities. Our specifications

must reflect and support this process. In addition, sys-

tems and software are continually changing and evolv-

ing; they must be designed to be changeable and the

specifications must support evolution without compro-
mising the confidence in the properties that were ini-

tially verified.

Many of the ideas in this paper are derived from at-

tempts by cognitive psychologists, engineers, and hu-

man factors experts to design and specify human-
machine interfaces. The human-machine interface pro-

vides a representation of the state of the system that the

operator can use to solve problems and perform control,

monitoring, and diagnosis tasks. Just as the control

panel in a plant is the interface between the operator

and the plant, system and software requirements and de-

sign specifications are the interface between the system

designers and builders or builders and maintainers. The
specifications help the designer, builder, tester, debug-

ger, or maintainer understand the system well enough to

create a physical form or to find problems in or change

the physical form.

The paper is divided into two parts. The first part
describes some basic ideas in systems theory and cog-

nitiveengineering1. Thesecondpart describesa type
ofspecificationmethodcalledintent specifications built

upon these basic ideas that is designed to satisfy the

goals listed above, i.e., to enhance human processing

and problem solving, to integrate formal and informal

aspects of software development, and to enhance our

ability to engineer for quality and to build evolvable

and changeable systems.

2 Specifications and Human

Problem Solving

To be useful to and usable by humans to solve prob-

lems, specification language and system design should
be based on an understanding of the problem or task

that the user is solving. The systems we design and

the specifications we use impose demands on humans.
We need to understand those demands and how humans

use specifications to solve problems if we are to design

specifications that reflect reasonable demands and that
assist humans in carrying out their tasks.

Not only does the language in which we specify problems
have an effect on our problem-solving ability, it also

affects the errors we make while solving those problems.

Our specification language design needs to reflect what
is known about human limitations and capabilities.

A problem-solving activity involves achieving a goal by

selecting and using strategies to move from the cur-

rent state to the goal state. Success depends on se-

lecting an effective strategy or set of strategies and

obtaining the information necessary to carry out that

strategy successfully. Specifications used in problem-

solving tasks are constructed to provide assistance in
this process. Cognitive psychology has firmly estab-

lished that the representation of the problem provided

to problem solvers can affect their performance (see Nor-

man [Nor93] for a survey of this research). In fact,
Woods claims that there are no neutral representations

[Woo95]: The representations available to the problem

solver either degrade or support performance. To pro-
vide assistance for problem solving, then, requires that

we develop a theoretical basis for deciding which rep-
resentations support effective problem-solving strate-

gies. For example, problem-solving performance can be
improved by providing representations that reduce the

problem solver's memory load [KHS85] and that display

1Cognitive engineering is a term that has come to denote the
combination of ideas from systems engineering, cognitive psychol-
ogy, and humans factors to cope with the challenges of build-
ing high-tech systems composed of humans and machines. These
challenges have necessitated augmenting traditional human fac-
tors approaches to consider the capabilities and limitations of the
human element in complex systems.

the critical attributes needed to solve the problem in a

perceptually salient way [KS90].

A problem-solving strategy is an abstraction describ-

ing one consistent reasoning approach characterized by

a particular mental representation and interpretation of

observations [RP95]. Examples of strategies are hypoth-
esis and test, pattern recognition, decision tree search,

reasoning by analogy, and topological search.

Some computer science researchers have proposed the-
ories about the mental models and strategies used in

program understanding tasks (examples of such mod-
els are [Bro83, Let86, Pen87, SM79, SE84]). Although

this approach seems useful, it may turn out to be more
difficult than appears on the surface. Each of the

users of a specification may (and probably will) have

different mental models of the system, depending on

such factors as prior experience, the task for which

the model is being used, and their role in the system

[AT90, Dun87, Luc87, Rea90]. The same person may
have multiple mental models of a system, and even hav-

ing two contradictory models of the same system does
not seem to constitute a problem for people [Luc87]

Strategies also seem to be highly variable. A study
that used protocol analysis to determine the trouble-

shooting strategies of professional technicians working

on electronic equipment found that no two sequences
of actions were identical, even though the technicians

were performing the same task every time (i.e., finding

a faulty electronic component) [Ras86]. Not only do

search strategies vary among individuals for the same

problem, but a person may vary his or her strategy

dynamically during a problem-solving activity: Effec-

tive problem solvers change strategies frequently to cir-
cumvent local difficulties encountered along the solution

path and to respond to new information that changes

the objectives and subgoals or the mental workload
needed to achieve a particular subgoal.

It appears, therefore, that to allow for multiple users
and for effective problem solving (including shifting

among strategies), specifications should support all pos-

sible strategies that may be needed for a task to allow

for multiple users of the representation, for shedding

mental workload by shifting strategies during problem

solving, and for different cognitive and problem-solving

styles. We need to design specifications such that users

can easily find or infer the information they need regard-
less of their mental model or preferred problem-solving

strategies. That is, the specification design should be
related to the general tasks users need to perform with
the information but not be limited to specific predefined

ways of carrying out those tasks.

One reason why many software engineering tools and

environments are not readily accepted or easily used is

that they imply a particularmentalmodelandforce
potentialusersto workthroughproblemsusingonly

one or a very limited number of strategies, usually the
strategy or strategies preferred by the designer of the

tool. The goal of specification language design should

be to make it easy for users to extract and focus on

the important information for the specific task at hand

without assuming particular mental models or limiting

the problem-solving strategies employed by the users

of the document. The rest of this paper describes an

approach to achieve this goal.

3 Components of a Specifica-

tion Methodology to Support

Problem-Solving

Underlying any methodology is an assumed process. In

our case, the process must support the basic system

and software engineering tasks. A choice of an under-

lying system engineering process is the first component

of a specification methodology. In addition, cognitive

psychologists suggest that three aspects of interface de-

sign must be addressed if the interface is to serve as

an effective medium: (1) content (what semantic infor-

mation should be contained in the representation given

the goals and tasks of the users, (2) structure (how to

design the representation so that the user can extract

the needed information), and (3) form (the notation or

format of the interface) [VR90]. The next sections ex-
amine each of these four aspects of specification design
in turn.

3.1 Process

Any system specification method should support the

systems engineering process. This process provides a

logical structure for problem solving (see Figure 1).

First a need or problem is specified in terms of objec-

tives that the system must satisfy and criteria that can

be used to rank alternative designs. Then a process

of system synthesis takes place that results in a set of

alternative designs. Each of these alternatives is ana-

lyzed and evaluated in terms of the stated objectives
and design criteria, and one alternative is selected to be

implemented. In practice, the process is highly itera-

tive: The results from later stages are fed back to early

stages to modify objectives, criteria, design alternatives,
and so on.

Design alternatives are generated through a process of

system architecture development and analysis. The sys-

tem engineers break down the system into a set of sub-

Identify objectives and criteria I

,1
Generate alternative designs,

identifying subsystem functions
and constraints, major system

interfaces, and subsystem
interface topology

Evaluate alternatives against
objectives and criteria

,L
I Select one alternative

I for implementation

Figure 1: The basic systems engineering process.

systems, together with the functions and constraints im-

posed upon the individual subsystem designs, the major
system interfaces, and the subsystem interface topology.

These aspects are analyzed with respect to desired sys-

tem performance characteristics and constraints, and

the process is iterated until an acceptable system de-

sign results. The preliminary design at the end of this

process must be described in sufficient detail that sub-

system implementation can proceed independently.

The software requirements and design process are sim-

ply subsets of the larger system engineering process.

System engineering views each system as an integrated
whole even though it is c()mposed of diverse, special-

ized components, which may be physical, logical (soft-
ware), or human. The objective is to design subsystems

that when integrated into the whole provide the most

effective system possible to achieve the overall objec-

tives. The most challenging problems in building com-

plex systems today arise in the interfaces between com-

ponents. One example is the new highly automated
aircraft where most incidents and accidents have been

blamed on human error, but more properly reflect diffi-

culties in the collateral design of the aircraft, the avion-
ics systems, the cockpit displays and controls, and the

demands placed on the pilots.

What types of specifications are needed to support hu-

mans in this system engineering process and to spec-

ify the results? Design decisions at each stage must

be mapped into the goals and constraints they are de-

rived to satisfy, with earlier decisions mapped (traced)

to later stages of the process, resulting in a seamless

(gapless) record of the progression from high-level sys-

tem requirements down to component requirements and

designs.Thespecificationsmustalsosupportthevari-
oustypesofformalandinformalanalysisusedtodecide
betweenalternativedesignsandto verifytheresultsof
thedesignprocess.Finally,theymustassistin theco-
ordinateddesignof thecomponentsandtheinterfaces
betweenthem.

3.2 Content

Thesecondcomponentof a specificationmethodology
is the contentof the specifications.Determiningap-
propriatecontent requires considering what the spec-

ifications will be used for, that is, the problems that

humans are trying to solve when they use specifica-

tions. Previously, we looked at a narrow slice of this
problem--what should be contained in blackbox re-

quirements specifications for process control software to

ensure that the resulting implementations are internally

complete [JLHM91, Lev95]. This paper again considers
the question of specification content, but within a larger
context.

This question is critical because cognitive psychologists
have determined that people tend to ignore information

during problem solving that is not represented in the

specification of the problem. In experiments where some

problem solvers were given incomplete representations

while others were not given any representation at all,

those with no representation did better [FSL78, Smi89].

An incomplete problem representation actually impaired

performance because the subjects tended to rely on it

as a comprehensive and truthful representation--they

failed to consider important factors deliberately omitted
from the representations. Thus, being provided with an

incomplete problem representation (specification) can
actually lead to worse performance than having no rep-

resentation at all [VR92].

One possible explanation for these results is that some
problem solvers did worse because they were unaware of

important omitted information. However, both novices

and experts failed to use information left out of the dia-

grams with which they were presented, even though the

experts could be expected to be aware of this informa-

tion. Fischoff, who did such an experiment involving

fault tree diagrams, attributed it to an "out of sight,

out of mind" phenomenon [FSL78].

One place to start in deciding what should be in a sys-

tem specification is with basic systems theory, which de-
fines a system as a set of components that act together

as a whole to achieve some common goal, objective, or

end. The components are all interrelated and are ei-

ther directly or indirectly connected to each other. This

concept of a system relies on the assumptions that the

system goals can be defined and that systems are atom-

istic, that is, capable of being separated into component
entities such that their interactive behavior mechanisms
can be described.

The system state at any point in time is the set of rele-

vant properties describing the system at that time. The

system environment is a set of components (and their
properties) that are not part of the system but whose

behavior can affect the system state. The existence of a

boundary between the system and its environment im-

plicitly defines as inputs or outputs anything that crosses
that boundary.

It is very important to understand that a system is al-

ways a model--an abstraction conceived by the analyst.

For the same man-made system, an observer may see

a different purpose than the designer and may also fo-
cus on different relevant properties. Thus, there may

be multiple "correct" system models or specifications.

To ensure consistency and enhance communication, a

common specification is required that defines the:

• System boundary,

• Inputs and outputs,

• Components,

• Structure,

• Relevant interactions between components and the

means by which the system retains its integrity (the

behavior of the components and their effect on the

overall system state), and

• Purpose or goals of the system that makes it reason-

able to consider it to be a coherent entity [Che81].

All of these properties need to be included in a complete

system model or specification along with a description
of the aspects of the environment that can affect the

system state. Most of these aspects are already included

in our current specification languages. However, the

last, information about purpose or intent, is often not.

One of the most important limitations of the models un-

derlying most current specification languages, both for-

mal and informal, is that they cannot allow us to infer

what is not explicitly represented in the model, includ-

ing the intention of doing something a particular way.
This intentional information is critical in the design and

evolution of software. As Harman has said, practical

reasoning is concerned with what to intend while formal

reasoning with what to believe [Har82]. "Formal logic
arguments are a priori true or false with reference to an

explicitly defined model, whereas functional reasoning

deals with relationships between models, and truth de-
pends on correspondence with the state of affairs in the

real world" [Har82].

In the conclusions to our paper describing our experi-

ences specifying the requirements for TCAS II (an air-

craft collision avoidance system), we wrote:

In reverseengineeringTCAS,wefoundit im-
possibleto derivetherequirementsspecifica-
tionstrictlyfromthe pseudocodeandanac-
companyingEnglishlanguagedescription.Al-
thoughthebasicinformationwasallthere,the
intentwaslargelymissingandoftenthemap-
pingfromgoalsorconstraintstospecificdesign
decisions.Therefore,distinguishingbetween
requirementsandartifactsoftheimplementa-
tionwasnotpossibleinall cases.Ashasbeen
discoveredbymostpeopleattemptingtomain-
tain suchsystems,anaudittrail of the deci-

sions and the reasons why decisions were made

is absolutely essential. This was not done by
TCAS over the 15 years of its development,

and those responsible for the system today are

currently attempting to reconstruct decision-
making information from old memos and cor-

porate memory. For the most part, only one

person is able to explain why some decisions

were made or why things were designed in a

particular way [LHHR94].

There is widespread agreement about the need for de-

sign rationale (intent) information in order to under-

stand complex software or to correctly and efficiently

change or analyze the impact of changes to it. Without
a record of intent, important decisions can be undone

during maintenance: Many serious accidents and losses

can be traced to the fact that a system did not oper-

ate as intended because of changes that were not fully

coordinated or fully analyzed to determine their effects

[Lev95]. What is not so clear is the content and struc-
ture of the information that is needed.

Simply keeping an audit trail of decisions and the rea-

sons behind them as they are made is not practical. The

number of decisions made in any large project is enor-

mous. Even if it were possible to write them all down,

finding the proper information when needed seems to be
a hopeless task if not structured appropriately. What is

needed is a specification of the intent (goals, constraints,

and design rationale) from the beginning, and it must
be specified in a usable and perceptually salient manner.

That is, we need a framework within which to select and

specify the design decisions that are needed to develop
and maintain software.

3.3 Structure

The third aspect of specifications, structure, is the ba-

sis for organizing information in the specification. The
information may all be included somewhere, but it may

be hard to find or to determine the relationship to in-

formation specified elsewhere.

Problem solving in technological systems takes place
within the context of a complex causal network of rela-

tionships [Dor87, R.as86, Rea90, VR92], and those rela-
tionships need to be reflected in the specification. The

information needed to solve a problem may all be in-
cluded somewhere in the assorted documentation used

in large projects, but it may be hard to find when needed

or to determine the relationship to information specified

elsewhere. Psychological experiments in problem solv-

ing find that people attend primarily to perceptually

salient information [KS90]. The goal of specification
language design should be to make it easy for users to

extract and focus on the important information for the

specific task at hand, which includes all potential tasks

related to use of the specification.

Cognitive engineers speak of this problem as "informa-

tion pickup" [Woo95]. Just because the information is
in the interface does not mean that the operator can

find it easily. The same is true for specifications. The

problem of information pickup is compounded by the

fact that there is so much information in system and

software specifications while only a small subset of it

may be relevant in any given context.

3.3.1 Complexity

The problems in building and interacting with systems

correctly are rooted in complexity and intellectual man-

ageability. A basic and often noted principle of engineer-
ing is to keep things simple. This principle, of course,

is easier to state than to do. Ashby's Law of Requi-

site Variety lash62] tells us that there is a limit to how

simple we can make control systems, including those

designs represented in software, and still have them be

effective. In addition, basic human ability is not chang-

ing. If humans want to build and operate increasingly
complex systems, we need to increase what is intellec-

tually manageable. That is, we will need to find ways

to augment human ability.

The situation is not hopeless. As Rasmussen observes,

the complexity of a system is not an objective feature

of the system [Ras85]. Observed complexity depends
upon the level of resolution upon which the system is

being considered. A simple object becomes complex if

observed through a microscope. Complexity, therefore,
can only be defined with reference to a particular rep-

resentation of a system, and then can only be measured

relative to other systems observed at the same level of
abstraction.

Thus, a way to cope with complex systems is to struc-
ture the situation such that the observer can transfer

the problem being solved to a level of abstraction with
less resolution. The complexity faced by the builders or

usersof a systemis determinedby their mental mod-

els (representations) of the internal state of the system.

We build such mental models and update them based

on what we observe about the system, that is, by means

of our interface to the system. Therefore, the apparent

complexity of a system ultimately depends upon the

technology of the interface system [Ras85].

The solution to the complexity problem is to take ad-

vantage of the most powerful resources people have for

dealing with complexity. Newman has noted, "People

don't mind dealing with complexity if they have some

way of controlling or handling it ... If a person is allowed

to structure a complex situation according to his percep-

tual and conceptual needs, sheer complexity is no bar

to effective performance" [New66, Ras85]. Thus, com-

plexity itself is not a problem if humans are presented

with meaningful information in a coherent, structured
context.

3.3.2 Hierarchy Theory

Two ways humans cope with complexity is to use

top-down reasoning and stratified hierarchies. Build-

ing systems bottom-up works for relatively simple sys-

tems. But as the number of cases and objects that

must be considered increases, this approach becomes

unworkable---we go beyond the limits of human mem-

ory and logical ability to cope with the complexity. Top-

down reasoning is a way of managing that complexity.
At the same time, we have found that pure top-down

reasoning is not adequate alone; humans need to com-

bine top-down with bottom-up reasoning. Thus, the

structure of the information must allow reasoning in
both directions.

In addition, humans cope with complexity by build-

ing stratified hierarchies. Models of complex systems

can be expressed in terms of a hierarchy of levels of

organization, each more complex than the one below,

where a level is characterized by having emergent prop-

erties. The concept of emergence is the idea that at any

given level of complexity, some properties characteris-

tic of that level (emergent at that level) are irreducible.

Such properties do not exist at lower levels in the sense

that they are meaningless in the language appropriate
to those levels. For example, the shape of an apple, al-

though eventually explainable in terms of the cells of the
apple, has no meaning at that lower level of description.

Regulatory or control action involves imposing con-
straints upon the activity at one level of a hierarchy.
Those constraints define the "laws of behavior" at that

level that yield activity meaningful at a higher level

(emergent behavior). Hierarchies are characterized by
control processes operating at the interfaces between

levels. Checkland explains it:

Any description of a control process entails

an upper level imposing constraints upon the
lower. The upper level is a source of an alter-

native (simpler) description of the lower level

in terms of specific functions that are emer-

gent as a result of the imposition of constraints

IChe81, pg. 871.

Hierarchy theory deals with the fundamental differences

between one level of complexity and another. Its ulti-

mate aim is to explain the relationships between dif-

ferent levels: what generates the levels, what separates

them, and what links them. Emergent properties associ-

ated with a set of components at one level in a hierarchy

are related to constraints upon the degree of freedom of

those components. In the context of this paper, it is im-

portant to note that describing the emergent properties

resulting from the imposition of constraints requires a

language at a higher level (a metalevel) different than

that describing the components themselves. Thus, dif-
ferent description languages are required at each hier-
archical level.

The problem then comes down to determining appro-

priate types of hierarchical abstraction that allow both

top-down and bottom-up reasoning. In computer sci-
ence, we have made much use of part-whole abstractions

where each level of a hierarchy represents an aggregation

of the components at a lower level and of information-

hiding abstractions where each level contains the same

conceptual information but hides some details about the

concepts, that is, each level is a refinement of the infor-

mation at a higher level.. Each level of our software

specifications can be thought of as providing what in-
formation while the next lower level describes how.

Such hierarchies, however, do not provide information

about why. Higher-level emergent information about
purpose or intent cannot be inferred from what we nor-

mally include in such specifications. Design errors may

result when we either guess incorrectly about higher-

level intent or omit it from our decision-making pro-

cess. For example, while specifying the system require-

ments for TCAS II [LHHR94], we learned from experts

that crossing maneuvers are avoided in the design for

safety reasons. The analysis on which this decision is

based comes partly from experience during TCAS sys-

tem testing on real aircraft and partly as a result of an

extensive safety analysis performed on the system. This
design constraint would not be apparent in most design

or code specifications unless it were added in the form of

comments, and it could easily be violated during system

modification unless it was recorded and easily located.

But there are abstractions that can be used in stratified

hierarchiesotherthanpart-wholeabstraction.While
investigatingthe designof safe human-machine inter-

action, Rasmussen studied protocols recorded by peo-

ple working on complex systems (process plant oper-

ators and computer maintainers) and found that they

structured the system along two dimensions: (1) a part-
whole abstraction in which the system is viewed as a

group of related components at several levels of physical

aggregation, and (2) a means--ends abstraction [Ras86].

3.3.3 Means-Ends Hierarchies

In a means-end abstraction, each level represents a dif-

ferent model of the same system. At any point in the

hierarchy, the information at one level acts as the goals
(the ends) with respect to the model at the next lower

level (the means). Thus, in a means-ends abstraction,
the current level specifies what, the level below how, and

the level above why IRas86]. In essence, this intent in-
formation is emergent in the sense of system theory:

When moving from one level to the next higher

level, the change in system properties repre-

sented is not merely removal of details of in-

formation on the physical or material prop-

erties. More fundamentally, information is

added on higher-level principles governing the
coordination of the various functions or ele-

ments at the lower level. In man-made sys-

tems, these higher-level principles are natu-

rally derived from the purpose of the system,

i.e., from the reasons for the configurations at

the level considered [Ras86]

A change of level involves both a shift in concepts and

in the representation structure as well as a change in
the information suitable to characterize the state of the

function or operation at the various levels [Ras86].

Each level in a means-ends hierarchy describes the sys-
tem in terms of a different set of attributes or "lan-

guage." Models at the lower levels are related to a

specific physical implementation that can serve several

purposes while those at higher levels are related to a

specific purpose that can be realized by several physi-

cal implementations. Changes in goals will propagate

downward through the levels while changes in the phys-

ical resources (such as faults or failures) will propagate
upward. In other words, states can only be described
as errors or faults with reference to their intended func-

tional purpose. Thus reasons for proper function are de-

rived "top-down." In contrast, causes of improper func-

tion depend upon changes in the physical world (i.e., the

implementation) and thus they are explained "bottom

up" [VR921.

Mappings between levels axe many-to-many: Compo-

nents of the lower levels can serve several purposes while

purposes at a higher level may be realized using sev-

eral components of the lower-level model. These goal-
oriented links between levels can be followed in either

direction, reflecting either the means by which a func-

tion or goal can be accomplished (a link to the level

below) or the goals or functions an object can affect

(a link to the level above). So the means-ends hierar-

chy can be traversed in either a top-down (from ends to

means) or a bottom-up (from means to ends) direction.

As stated earlier, our representations of problems have

an important effect on our problem-solving ability and

the strategies we use, and there is good reason to be-

lieve that representing the problem space as a means-

ends mapping provides useful context and support for

decision making and problem solving. Consideration of

purpose or reason (top-down analysis in a means-ends

hierarchy) has been shown to play a major role in un-

derstanding the operation of complex systems [Ras85].

Rubin's analysis of his attempts to understand the func-

tion of a camera's shutter (as cited in [Ras90]) provides

an example of the role of intent or purpose in under-

standing a system. Rubin describes his mental efforts
in terms of conceiving all the elements of the shutter in

terms of their function in the whole rather than explain-

ing how the individual parts worked: How they worked

was immediately clear when their function was known.

Rasmussen argues that this approach has the advan-

tage that solutions of subproblems are identifiable with

respect to their place in the whole picture, and it is im-

mediately possible to judge whether a solution is correct

or not. In contrast, arguing from the parts to the way

they work is much more difficult because it requires syn-
thesis: Solutions of subproblems must be remembered

in isolation, and their correctness is not immediately

apparent.

Support for this argument can be found in the difficul-
ties AI researchers have encountered when modeling the

function of mechanical devices "bottom-up" from the

function of the components. DeKleer and Brown found

that determining the function of an electric buzzer solely

from the structure and behavior of the parts requires

complex reasoning [DB83]. Rasmussen suggests that the

resulting inference process is very artificial compared
to the top-down inference process guided by functional

considerations as described by Ruben. "In the DeKleer-

Brown model, it will be difficult to see the woods for the

trees, while Rubin's description appears to be guided by

a birds-eye perspective " [Ras90].

Glaser and Chi suggest that experts and successful prob-

lem solvers tend to focus first on analyzing the func-

tional structure of the problem at a high level of ab-

stractionandthennarrowtheirsearchforasolutionby
focusingonmoreconcretedetails[GC88].Representa-
tionsthat constrainsearchin a waythat is explicitly
relatedto the purposeor intentfor whichthe system
is designedhavebeenshownto bemoreeffectivethan
thosethat donot becausetheyfacilitatethe typeof
goal-directedbehaviorexhibitedby experts[VCP95].
Therefore,weshouldbeableto improvetheproblem
solvingrequiredin softwaredevelopmentandevolution
tasksby providinga representation(i.e.,specification)
of the systemthat facilitatesgoal-orientedsearchby
makingexplicitthegoalsrelatedto eachcomponent.

Viewingasystemfromahighlevelofabstractionisnot
limitedto a means-endshierarchy,of course.Mosthi-
erarchiesallowoneto observesystemsat a lessdetailed
level.Thedifferenceis that themeans-endshierarchy
isexplicitlygoal oriented and thus assists goal-oriented

problem solving. With other hierarchies (such as the

part-whole hierarchies often used in computer science),
the links between levels are not necessarily related to

goals. So although it is possible to use higher-levels
of abstraction to select a subsystem of interest and to

constrain search, the subtree of the hierarchy connected

to a particular subsystem does not necessarily contain

system components relevant to the goals the problem
solver is considering.

3.4 Form (Notation)

The final aspect of specification design is the actual form

of the specification. Although this is often where we

start when designing languages, the four aspects actu-

ally have to be examined in order, first defining the pro-

cess to be supported, then determining what the con-
tent should be, then how the content will be structured

to make the information easily located and used, and

finally the form the language should take. All four as-
pects need to be addressed not only in terms of the anal-

ysis to be performed on the specification, but also with

respect to human perceptual and cognitive capabilities.

Note that the form itself must also be considered from

a psychological standpoint: The usability of the lan-

guage will depend on human perceptual and cognitive

strategies. For example, Fitter and Green describe the

attributes of a good notation with respect to human

perception and understanding [FG79]. Casner [Cas91]
and others have argued that the utility of any infor-

mation presentation is a function of the task that the

presentation is being used to support. For example, a
symbolic representation might be better than a graphic

for a particular task, but worse for others.

No particular specification language is being proposed
here. We first must clarify what needs to be expressed

before we can design languages that express that infor-

mation appropriately and effectively. In addition, differ-

ent types of systems require different types of languages.
All specifications are abstractions--they leave out unim-

portant details. What is important will depend on the
problem being solved. For different types of systems,

the important and difficult aspects differ. For example,

specifications for embedded controllers may emphasize
control flow over data flow (which is relatively trivial

for these systems), while data transformation or infor-

mation management systems might place more empha-

sis on the specification of data flow than control flow.
Attempts to include everything in the specification are

not only impractical, but involve wasted effort and are

unlikely to fit the budgets and schedules of industry

projects. Because of the importance of completeness,

as argued earlier, determining exactly what needs to be
included becomes the most important problem in spec-

ification design.

This paper deals with process, content and structure,

but not form (notation). We are defining specification

languages built upon the foundation laid in this paper

and on other psychological principles, but they will be

described in future papers.

4 Intent Specifications

These basic ideas provide the foundation for what I

call intent specifications. They have been developed
and used successfully in cognitive engineering by Vi-

cente and Rasmussen for the design of operator in-

terfaces, a process they call ecological interface design

[DV96, Vic91].

The exact number and content of the means-ends hier-

archy levels may differ from domain to domain. Here

I present a structure for process systems with shared
software and human control. In order to determine the

feasibility of this approach for specifying a complex sys-

tem, I extended the formal TCAS II aircraft collision

avoidance system requirements specification we previ-

ously wrote [LHHR94] to include intent information and
other information that cannot be expressed formally but

is needed in a complete system requirements specifica-

tion. We are currently applying the approach to other

examples, including a NASA robot and part of the U.S.

Air Traffic Control System. The TCAS II specification

is used as an example in this paper. 2 The table of con-

tents for the example TCAS II System Requirements

Specification (shown in Figure 3) may be helpful in fol-

2Our TCAS II Intent Specification (complete system specifi-
cation) is over 800 pages long. Obviously, the entire specifica-
tion cannot be included in this paper. It can be accessed from
http://www.cs.washington .edu/homes/leveson.

lowingthedescriptionofintentspecifications.Notethat
theonlypart of TCASthat wespecifiedpreviouslyis
section3.4andpartsof 3.3.

In the intentspecificationswehavebuilt for realsys-
tems,wehavefoundtheapproachto bepractical;in
fact,mostof theinformationin anintentspecification
is alreadylocatedsomewherein theoftenvoluminous
documentationforlargesystems.Theproblemin these
systemsusuallyliesin findingspecificinformationwhen
it is needed,in tracingtherelationshipsbetweeninfor-
mation,andin understandingthe systemdesignand
whyit wasdesignedthat way.Intentspecificationsare
meantto assistwith thesetasks.

Systemandsoftwarespecificationsof thetypebeing
proposed,likethoseusedin ecologicalinterfacedesign,
areorganizedalongtwodimensions:intentabstraction
andpart-wholeabstraction(seeFigure2). Thesetwo
dimensionsconstitutetheproblemspacein whichthe
humannavigates.Thepart-whole(horizontal)dimen-
sion,whichitselfcanbeseparatedintorefinementand
decomposition,allowsusersto changetheirfocusof at-
tentionto moreor lessdetailedviewswithineachlevel
or model.Theverticaldimensionspecifiesthe levelof
intentatwhichtheproblemisbeingconsidered,i.e.,the
languageor modelthat iscurrentlybeingused.

4.1 Part-Whole Dimension

Computer science commonly uses two types of part-

whole abstractions. Parallel decomposition (or its op-

posite, aggregation) separates units into (perhaps inter-

acting) components of the same type. In Statecharts,

for example, these components are called orthogonal
components and the process of aggregation results in

an orthogonal product. Each of the pieces of the par-

allel decomposition of Statecharts is a state machine,

although each state machine will in general be different.

The second type of part-whole abstraction--

refinement--takes a function and breaks it down into

more detailed steps. An example is the combining of a

set of states into a superstate in Statecharts. In Petri-

nets, such abstractions have been applied both to states

and to transitions--they provide a higher-level name for

a piece of the net. In programming, refinement abstrac-

tions are represented by procedures or subprograms.

Note that neither of these types of abstraction is an

"emergent-property" or means-ends abstraction--the

whole is simply broken up into a more detailed descrip-

tion. Additional information, such as intent, is not pro-

vided at the higher level.

Along this horizontal dimension, intent specifications

are broken up into three parts. The first column con-

tains information about characteristics of the environ-

ment that affects the ability to achieve the system goals
and design constraints. For example, in TCAS, the

designers need information about the operation of the

ground-based ATC system in order to fulfill the system-

level constraint of not interfering with it. Information

about the environment is also needed for some types

of hazard analysis and for normal system design. For

example, the design of the surveillance logic in TCAS
depends on the characteristics of the transponders car-

ried on the aircraft with which the surveillance logic
interacts.

The second column of the horizontal dimension is in-

formation about human operators or users. Too often

human factors design and software design is done in-

dependently. Many accidents and incidents in aircraft
with advanced automation have been blamed on human-

error that has been induced by the design of the au-

tomation. For example, Weiner introduced the term

clumsy automation to describe automation that places

additional and unevenly distributed workload, commu-

nication, and coordination demands on pilots without

adequate support [Wei89]). Sorter, Woods, and Billings

[SWB95] describe additional problems associated with

new attentional and knowledge demands and break-
downs in mode awareness and "automation surprises,"

which they attribute to technology-centered automation:

Too often, the designers of the automation focus exclu-
sively on technical aspects, such as the mapping from

software inputs to outputs, on mathematical models of

requirements functionality, and on the technical details

and problems internal to the computer; they do not de-

vote enough attention to the cognitive and other de-

mands of the automation design on the operator.

One goal of intent specifications is to integrate the infor-

mation needed to design "human-centered automation"

into the system requirements specification. We are also

working on analysis techniques to identify problematic

system and software design features in order to predict

where human errors are likely to occur [LPS97]. This
information can be used in both the automation design

and in the design of the operator procedures, tasks, in-

terface, and training.

The third part of the horizontal dimension is the sys-

tem itself and its decomposition along the part-whole
dimension.

4.2 Intent Dimension

The Intent (vertical) dimension has five hierarchical lev-

els, each providing intent ("why") information about
the level below. Each level is mapped to the appropriate

parts of the intent levels above and below it, providing

Refineme_

System

Purpose

Intent

System

Principles

Blackbox

Behavior

Design

Representation

Code

(Physical

Representation)

.C

Decomposition

O_perator Components

I I

I I

1 I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

l I

I I

/

/
Figure 2: The structure of an intent specification for software systems.

traceability of high-level system requirements and con-

stralnts down to code (or physical form) and vice versa.

Each level also supports a different type of reasoning

about the system, with the highest level assisting sys-
tems engineers in their reasoning about system-level

goals, constraints, priorities, and tradeoffs. The second

level, System Design Principles, allows engineers to rea-
son about the system in terms of the physical principles

and laws upon which the design is based. The Black-
box Behavior level enhances reasoning about the logical

design of the system as a whole and the interactions
between the components as well as the functional state

without being distracted by implementation issues. The

lowest two levels provide the information necessary to

reason about individual component design and imple-

mentation issues. The mappings between levels provide

the relational information that allows reasoning across
hierarchical levels.

Each level (except the top level) also includes a specifi-
cation of the requirements and results of verification or
validation activities for the information at that specifi-

cation level. The top level does not include this infor-

mation (except perhaps for parts of the hazard analysis)
because it is not clear what types of validation, outside

of expert review, would be appropriate at this highest
level of intent abstraction.

4.2.1 System Purpose

Along the vertical dimension, the highest specification
level, System Purpose, contains the (1) system goals, (2)

design constraints, (3) assumptions, (4) limitations, (5)

design evaluation criteria and priorities, and (6) results

of analyses for system level qualities.

Examples of high-level goals (purpose) for TCAS II are
to:

GI: Provide affordable and compatible collision avoid-

ance system options for a broad spectrum of Na-

tional Airspace System users.

G2: Detect potential midair collisions with other aircraft

in all meteorological conditions.

Usually, in the early stages of a project, goals are stated

in very general terms. One of the first steps in defining

system requirements is to refine the goals into testable
and achievable high-level requirements. For G1 above,

a refined subgoal is:

RI: Provide collision avoidance protection for any two

aircraft closing horizontally at any rate up to 1200
knots and vertically up to 10,000 feet per minute.

This type of refinement and reasoning is done at the

System Purpose level, using an appropriate specification

language (most likely English).

Requirements (and constraints) are also included for the

10

1. System Purpose

1.1 Introduction

1.2 Historical Perspective
1.3 Environment

1.3.1 Environmental Assumptions
1.3.2 Environmental Constraints

1.4 Operator
1.4.1 Tasks and Procedures

1.4.2 Pilot-TCAS Interface Requirements

1.5 TCAS System Goals

1.6 High-Level Functional Requirements

1.7 System Limitations

1.8 System Constraints
1.8.1 General Constraints

1.8.2 Safety-Related Constraints

1.9 Hazard Analysis

2. System Design Principles

2.1 General Description

2.2 TCAS System Components

2.3 Surveillance and Collision Avoidance Logic

2.3.1 General Concepts
2.3.2 Surveillance

2.3.3 Tracking
2.3.4 Traffic Advisories

2.3.5 Resolution Advisories

2.3.6 TCASTFCAS Coordination

2.4 Performance Monitoring
2.5 Pilot-TCAS Interface

2.5.1 Controls

2.5.2 Displays and Aural Annunciations

2.6 Testing and Validation
2.6.1 Simulations

2.6.2 Experiments
2.6.3 Other Validation Procedures and Results

3. Blackbox Behavior

3.1 Environment

3.2 Flight Crew Requirements
3.2.1 Tasks

3.2.2 Operational Procedures
3.3 Communication and Interfaces

3.3.1 Pilot-TCAS Interface

3.3.2 Message Formats

3.3.3 Input Interfaces

3.3.4 Output Interfaces

3.3.5 Receiver, Transmitter, Antennas

3.4 Behavioral Requirements
3.4.1 Surveillance

3.4.2 Collision Avoidance

3.4.3 Performance Monitoring

3.5 Testing Requirements

4. Physical and Logical Function

4.1 Human-Computer Interface Design

4.2 Pilot Operations (Flight) Manual

4.3 Software Design

4.4 Physical Requirements
4.4.1 Definition of Standard Conditions

4.4.2 Performance Capability of Own Aircraft's

Mode S Transponder
4.4.3 Receiver Characteristics

4.4.4 TCAS Transmitter Characteristics

4.4.5 TCAS Transmitter Pulse Characteristics

4.4.6 TCAS Pulse Decoder Characteristics

4.4.7 Interfence Limiting

4.4.8 Aircrat_ Suppression Bus

4.4.9 TCAS Data Handling and Interfaces

4.4.10 Bearing Estimation

4.4.11 High-Density Techniques

4.5 Hardware Design Specifications

4.6 Verification Requirements

5. Physical Realization

5.1 Software

5.2 Hardware Assembly Instructions

5.3 Training Requirements (Plan)

5.4 Maintenance Requirements

A. Constant Definitions

B. Table Definitions

C. Reference Algorithms

D. Physical Measurement Conventions

E. Performance Requirements on Equipment
that Interacts with TCAS

F. Glossary

G. Notation Guide

H. Index

Figure 3: The contents of the sample TCAS Intent Specification

11

humanoperator,forthehuman-computerinterface,and
for theenvironmentin whichTCASwill operate.Re-
quirementsontheoperator(in thiscase,thepilot)are
usedto guidethedesignof the TCAS-pilotinterface,
flightcrewtasksandprocedures,aircraftflightmanuals,
andtrainingplansandprogram.Linksareprovided
to showtherelationships.ExampleTCASII operator
requirementsare:

O1: After the threat is resolved, the pilot shall return

promptly and smoothly to his/her previously as-

signed flight path.

O2: The pilot must not maneuver on the basis of a Traf-

fic Advisory only.

Design constraints are restrictions on how the system
can achieve its purpose. For example, TCAS is not al-

lowed to interfere with the ground-level air traffic con-

trol system while it is trying to maintain adequate sep-
aration between aircraft. Avoiding interference is not a

goal or purpose of TCAS--the best way to achieve it
is not to build the system at all. It is instead a con-

straint on how the system can achieve its purpose, i.e.,

a constraint on the potential system designs. Because
of the need to evaluate and clarify tradeoffs among al-

ternative designs, separating these two types of intent

information (goals and design constraints) is important.

For safety-critical systems, constraints should be further

separated into normal and safety-related. Examples of

non-safety constraints for TCAS II are:

CI: The system must use the transponders routinely

carried by aircraft for ground ATC purposes.

C2: No deviations from current FAA policies and

philosophies must be required.

Safety-related constraints should have two-way links to

the system hazard log and perhaps links to any analysis
results that led to that constraint being identified. Haz-

ard analyses specified on this level are linked to Level 1

requirements and constraints on this level, to design fea-
tures on Level 2, and to system limitations (or accepted

risks). Example safety constraints are:

SCI: The system must generate advisories that require
as little deviation as possible from ATC clearances.

SC2: The system must not disrupt the pilot and ATC

operations during critical phases of flight.

Note that refinement occurs at the same level of the

intent specification (see Figure 2). For example, the

safety-constraint SC3 can be refined

SCI: The system must not interfere with the ground ATC

system or other aircraft transmissions to the ground

A TC system.

SCI.I: The system design must limit interfer-

ence with ground-based secondary surveillance

radar, distance-measuring equipment chan-

nels, and with other radio services that operate

in the 1030/1090 MHz frequency band.

SC1.1.1: The design of the Mode S waveforms

used by TCAS must provide compatibility
with Modes A and C of the ground-based

secondary surveillance radar system.
SCI.I.I: The frequency spectrum of Mode S

transmissions must be controlled to pro-

tect adjacent distance-measuring equip-
ment channels.

SCI.I.I: The design must ensure electromag-

netic compatibility between TCAS and

SC1.2: Multiple TCAS units within detection range

of one another (approximately 30 nm 0 must

be designed to limit their own transmissions.
As the number of such TCAS units within this

region increases, the interrogation rate and

power allocation for each of them must de-

crease in order to prevent undesired interfer-
ence with ATC.

Environment requirements and constraints may lead to
restrictions on the use of the system or to the need for

system safety and other analyses to determine that the

requirements hold for the larger system in which the sys-

tem being designed is to be used. Examples for TCAS
include:

El: Among the aircraft environmental alerts, the hier-

archy shall be: Windshear has first priority, then
the Ground Proximity Warning System (GPWS),

then TCAS.

E2: The behavior or interaction of non-TCAS equip-

ment with TCAS must not degrade the performance

of the TCAS equipment or the performance of the

equipment with which TCAS interacts.
E3: The TCAS alerts and advisories must be indepen-

dent of those using the master caution and warning

system.

Assumptions are specified, when appropriate, at all lev-
els of the intent specification to explain a decision or
to record fundamental information on which the de-

sign is based. These assumptions are often used in the
safety or other analyses or in making lower level de-

sign decisions. For example, operational safety depends
on the accuracy of the assumptions and models under-

lying the design and hazard analysis processes. The

operational system should be monitored to ensure (1)
that it is constructed, operated, and maintained in the

manner assumed by the designers, (2) that the mod-

els and assumptions used during initial decision making

and design were correct, and (3) that the models and

assumptions are not violated by changes in the system,

12

suchasworkaroundsorunauthorizedchangesin proce-
dures,or by changesin theenvironment[Lev95].Op-
erationalfeedbackon trends,incidents,andaccidents
shouldtriggerreanalysiswhenappropriate.Linkingthe
assumptionsthroughoutthedocumentwiththehazard
analysis(forexample,to particularboxesin thesystem
faulttrees)willassistinperformingsafetymaintenance
activities.

Examplesof assumptionsassociatedwith requirements
onthefirst leveloftheTCASintentspecification:

RI: Provide collision avoidance protection for any two

aircraft closing horizontally at any rate up to 1200

knots and vertically up to 10,000 feet per minute.

Assumption: This requirement is derived

from the assumption that commercial aircraft

can operate up to 600 knots and 5000 _pm dur-

ing vertical climb or controlled descent (and

therefore two planes can close horizontally up

to 1200 knots and vertically up to iO, O00 fpm}.

R3: TCAS shall operate in enroute and terminal areas

with traffic densities up to 0.3 aircraft per square

nautical miles (i.e., 2,_ aircraft within 5 nmi).

Assumption: Traffic density may increase to

this level by 1990, and this will be the maxi-

mum density over the next 20 years.

An example of an assumption associated with a safety
constraint is:

SC5: The system must not disrupt the pilot and ATC op-

erations during critical phases of flight nor disrupt

aircraft operation.

SC5.1: The pilot of a TCAS-equipped aircraft must

have the option to switch to the Traffic-

Advisory-Only mode where TAs are displayed

but display of resolution advisories is inhib-
ited.

Assumption: This feature will be used

during final approach to parallel runways,
when two aircraft are projected to come
close to each other and TCAS would call

for an evasive maneuver.

Assumptions may also apply to features of the environ-

ment. Examples of environment assumptions for TCAS
are that:

EAI: All aircraft have legal identification numbers.

EA2: All aircraft carry transponders.

EA3: The TCAS-equipped aircraft carries a Mode-S air
traffic control transponder, whose replies include

encoded altitude when appropriately interrogated.

EA4: Altitude information is available from intruding

targets with a minimum precision of 100 feet.

EA5: Threat aircraft will not make an abrupt maneuver

that thwarts the TCAS escape maneuver.

System limitations are also specified at Level 1 of an

intent specification. Some may be related to the basic

functional requirements, such as:

LI: TCAS does not currently indicate horizontal escape

maneuvers and therefore does not (and is not in-

tended to) increase horizontal separation.

Limitations may also relate to environment assump-

tions. For example, system limitations related to the

environment assumptions above include:

L2: TCAS provides no protection against aircraft with

nonoperational transponders.

L3: Aircraft performance limitations constrain the mag-

nitude of the escape maneuver that the flight crew
can safely execute in response to a resolution advi-

sory. It is possible for these limitations to preclude

a successful resolution of the conflict.

L4: TCAS is dependent on the accuracy of the threat

aircraft's reported altitude. Separation assurance

may be degraded by errors in intruder pressure alti-

tude as reported by the transponder of the intruder

aircraft.

Assumption: This limitation holds for ex-

isting airspace, where many aircraft use pres-
sure altimeters rather than GPS. As more air-

craft install GPS systems with greater accu-

racy than current pressure altimeters, this lim-
itation will be reduced or eliminated.

Limitations are often associated with hazards or hazard

causal factors that could not be completely eliminated

or controlled in the design. Thus they represent ac-

cepted risks. For example:

L5: TCAS will not issue an advisory if it is turned on or
enabled to issue resolution advisories in the middle

of a conflict (-+ FTA-405) a.

L6: If only one of two aircraft is TCAS equipped while

the other has only ATCRBS altitude-reporting ca-
pability, the assurance of safe separation may be

reduced (-_ FTA-ego).

In our TCAS intent specification, both of these system

limitations have pointers to boxes in the fault tree gen-

erated during the hazard analysis of TCAS II.

Finally, limitations may be related to problems encoun-

tered or tradeoffs made during the system design process

(recorded on lower levels of the intent specification). For

example, TCAS has a Level 1 performance monitoring
requirement that led to the inclusion of a self-test func-

tion in the system design to determine whether TCAS

3The pointer to FTA-405 denotes the box labelled 405 in the
Level-1 fault tree analysis

13

isoperatingcorrectly.Thefollowingsystemlimitation
relatesto thisself-testfacility:

L7: Use by the pilot of the self-test function in flight

will inhibit TCAS operation for up to 20 seconds

depending upon the number of targets being tracked.

The ATC transponder will not function during
some portion of the self-test sequence.

Most of these system limitations will be traced down

in the intent specification levels to the user documen-

tation. In the case of an avionics system like TCAS,

this specification includes the Pilot Operations (Flight)

Manual on level 4 of our TCAS intent specification. An

example is shown in the next section.

Evaluation criteria and priorities are used to resolve

conflicts among goals and design constraints and to
guide design choices at lower levels. This information

has not been included in the TCAS example specifica-
tion as I was unable to find out how these decisions were

made during the TCAS design process.

Finally, Level 1 contains the analysis results for system-

level (emergent) properties such as safety or security.
For the TCAS specification, a hazard analysis (including

fault tree analysis and failure modes and effects analy-

sis) was performed and is included and linked to the

safety-critical design constraints on this level and to

lower-level design decisions based on the hazard anal-

ysis. Whenever changes are made in safety-critical sys-

tems or software (during development or during main-

tenance and evolution), the safety of the change needs

to be evaluated. This process can be difficult and ex-

pensive. By providing links throughout the levels of the

intent specification, it should be easy to assess whether

a particular design decision or piece of code was based

on the original safety analysis or safety-related design
constraint.

4.2.2 System Design Principles

The second level of the specification contains System

Design Principles---the basic system design and scien-

tific and engineering principles needed to achieve the

behavior specified in the top level. The horizontal di-

mension again allows abstraction and refinement of the

basic system principles upon which the design is predi-
cated.

For TCAS, this level includes such general principles as
the basic tau concept, which is related to all the high-

level alerting goals and constraints:

PRI: Each TCAS-equipped aircraft is surrounded by a

protected volume of airspace. The boundaries of

this volume are shaped by the tau and DMOD cri-
teria.

PRI.I: TAU: In collision avoidance, time-to-go to
the closest point of approach (CPA) is more

important than distance-to-go to the CPA.

Tau is an approximation of the time in sec-

onds to CPA. Tau equals 3600 times the slant

range in nmi, divided by the closing speed in
knots.

PR1.2: DMOD: If the rate of closure is very low,

a target could slip in very close without cross-

ing the tau boundaries and triggering an ad-

visory. In order to provide added protection

against a possible maneuver or speed change

by either aircraft, the tau boundaries are mod-

ified (called DMOD}. DMOD varies depending

on own aircraft's altitude regime. See Table 2.

The principles are linked to the related higher level re-

quirements, constraints, assumptions, limitations, and

hazard analysis as well as linked to lower-level system

design and documentation. Assumptions used in the
formulation of the design principles may also be speci-

fied at this level. For example, the TCAS design has a

built-in bias against generating advisories that would re-

sult in the aircraft crossing paths (called altitude cross-

ing advisories).

PR36.2: A bias against altitude crossing RAs is also used

in situations involving intruder level-offs at least
600 feet above or below the TCAS aircraft. In

such a situation, an altitude-crossing advisory is

deferred if an intruder aircraft that is projected to

cross own aircraft's altitude is more than 600 feet

away vertically (_. Al t_S epar ation__T estm_ 351).

Assumption: In most cases, the intruder

will begin a level-off maneuver when it is

more than 600 feet away and so should have

a greatly reduced vertical rate by the time it

is within 200 feet of its altitude clearance

(thereby either not requiring an RA if it levels
off more than ZTHa a feet away or requiring a

non-crossing advisory for level-offs begun after

ZTHR is crossed but before the 600 foot thresh-

old is reached).

The example above includes a pointer down to

the part of the black box requirements specification

(Aft_Separation_Test) that embodies the design prin-

ciple. As another example of the type of links that may
be found between Level 2 and the levels above and be-

low it, consider the following. TCAS II advisories may
need to be inhibited because of an inadequate climb per-

formance for the particular aircraft on which TCAS II

is installed. The collision avoidance maneuvers posted

4The vertical dimension, called ZTHR, used to determine
whether advisories should be issued varies from 750 to 950 feet,
depending on the TCAS aircraft's altitude.

14

asadvisories(calledRAsor ResolutionAdvisories)by
TCASII assumeanaircraft'sabilityto safelyachieve
them. If it is likelytheyarebeyondthecapabilityof
theaircraft,thenTCASII mustknowbeforehandsoit
canchangeits strategyandissueanalternativeadvi-
sory.Theperformancecharacteristicsareprovidedto
TCASII throughtheaircraftinterface.Anexamplede-
signprinciple(relatedto thisproblem)foundonLevel
2of theintentspecificationis:

PR39:Because of the limited number of inputs to TCAS

for aircraft performance inhibits, in some instances
where inhibiting RAs would be appropriate it is not

possible to do so (?L3). In these cases, TCAS may
command maneuvers that may significantly reduce

stall margins or result in stall warning (_SC9.1).

Conditions where this may occur include The

aircraft flight manual or flight manual supplement

should provide information concerning this aspect

of TCAS so that flight crews may take appropriate

action ($ [Pilot procedures on Level 3 and Aircraft

Flight Manual on Level 4).

Finally, principles may reflect tradeoffs between higher-

level goals and constraints. As examples:

PR2: Tradeoffs must be made between necessary protec-

tion (G1) and unnecessary advisories (SC5). This

is accomplished by controlling the sensitivity level,

which controls the tau, and therefore the dimen-

sions of the protected airspace around each TCAS-

equipped aircraft. The greater the sensitivity level,

the more protection is provided but the higher is the

incidence of unnecessary alerts. Sensitivity level is

determined by ...

PR38: The need to inhibit CLIMB RAs because of inad-

equate aircraft climb performance will increase the

likelihood of TCAS H (a) issuing crossing maneu-

vers, which in turn increases the possibility that an
RA may be thwarted by the intruder maneuvering

(_SC7.1, FTA-1150), (b) causing an increase in

DESCEND RAs at low altitude (_SC8.1), and (e)

providing no RAs if below the descend inhibit level

(1200 feet above ground level on takeoff and 1000

feet above ground level on approach).

4.2.3 Blackbox Behavior

Beginning at the third level or Blackbox Behavior level,
the specification starts to contain information more fa-

miliar to software engineers. Above this level, much of

the information, if located anywhere, is found in sys-

tem engineering specifications. The Blackbox Behavior

model at the whole system viewpoint specifies the sys-

tem components and their interfaces, including the hu-

man components (operators). Figure 4 shows a system-

level view of TCAS II and its environment. Each system

component behavioral description and each interface is

refined in the normal way along the horizontal dimen-
sions.

The environment description includes the assumed be-

havior of the external components (such as the altime-

ters and transponders for TCAS), including perhaps

failure behavior, upon which the correctness of the sys-
tem design is predicated, along with a description of

the interfaces between the TCAS system and its envi-

ronment. Figure 5 shows part of a state-machine de-

scription of an environment component, in this case an
altimeter.

Remember that the boundaries of a system are purely

an abstraction and can be set anywhere convenient for

the purposes of the specifier. In this case, I included

as environment any component that was already on the

aircraft or in the airspace control system and was not

newly designed or built as part of the TCAS effort.

Going along this level to the right, each arrow in Fig-

ure 4 represents a communication and needs to be de-

scribed in more detail. Each box (component) also
needs to be refined. What is included in the decom-

position of the component will depend on whether the
component is part of the environment or part of the sys-

tem being constructed. The language used to describe

the components may also vary. I use a state-machine
language called SpecTRM-RL (Specification Tools and

Requirements Methodology-Requirements Language),

which is a successor to the language (RSML) used in

our official TCAS II specification [LHHR94]. Figure 6

shows part of the SpecTRM-RL description of the be-

havior of the CAS (collision avoidance system) subcom-

ponent. SpecTRM-RL specifications are intended to be

both easily readable with minimum instruction and for-

mally analyzable (we have a set of analysis tools that

work on these specifications).

Note that the behavioral descriptions at this level are

purely blackbox: They describe the inputs and outputs
of each component and their relationships only in terms

of externally visible variables, objects, and mathemat-

ical functions. Any of these components (except the

humans, of course) could be implemented either in hard-

ware or software (and, in fact, some of the TCAS surveil-

lance functions are implemented using analog devices

by some vendors). Decisions about physical implemen-
tation, software design, internal variables, and so on are

limited to levels of the specification below this one.

Other information at this level might include flight crew

requirements such as description of tasks and opera-

tional procedures, interface requirements, and the test-

ing requirements for the functionality described on this

level. We have developed a visual operator task mod-

eling language that can be translated to SpecTRM-RL

15

Displays and
Aural Alerts

Mode Selector

TCAS

\ Pressure

Altimeter

Radio

Altimeter

A/C

Discretes

Antennas Transmitter Mode-S
Transponder

Air Data
Computer

l ders stati:1
Figure 4: System viewpoint showing the system interface topology for the Blackbox Behavior level of the TCAS

specification.

16

I Operating Normally
RADIO

ALTIMETER
Malfunction Detected

Failed Self-Test
I Not Sending Output

Malfunction Undetected

[Sending Zeros _-]

I Sending Max Value

1

I Stuck on Single Value

Sending Random Values

Figure 5: Part of the SpecTRM-RL description of an environment component (a radio altimeter). Modeling failure

behavior is especially important for safety analyses. In this example, (1) the altimeter may be operating correctly,
(2) it may have failed in a way that the failure can be detected by TCAS II (i.e., it fails a self-test and sends a status

message to TCAS or it is not sending any output at all), or (3) the malfunctioning is undetected and it sends an
incorrect radio altitude.

and thus permits integrated simulation and analysis of

the entire system, including human-computer interac-
tions [BL98].

4.2.4 Design Representation

The two lowest levels of an intent specification provide

the information necessary to reason about component

design and implementation. The fourth level, Design

Representation, contains design information. Its con-
tent will depend on whether the particular function is

being implemented using analog or digital devices or

both. In any case, this level is the first place where

the specification should include information about the

physical or logical implementation of the components.

For functions implemented on digital computers, the

fourth level might contain the usual software design doc-

uments or it might contain information different from

that normally specified. Again, this level is linked to

the higher level specification.

The design intent information may not all be completely

linked and traceable upward to the levels above the

Design Representation--for example, design decisions
based on performance or other issues unrelated to re-

quirements or constraints, such as the use of a particular

graphics package because the programmers are familiar

with it or it is easy to learn. Knowing that these deci-

sions are not linked to higher level purpose is important

during software maintenance and evolution activities.

The fourth level of the example TCAS intent specifi-
cation simply contains the official pseudocode design

specification. But this level might contain information

different than we usually include in design specifica-

tions. For example, Soloway et.al. [So188] describe the

problem of modifying code containing delocalized plans

(plans or schemas with pieces spread throughout the

software). They recommend using pointers to chain the
pieces together, but a more effective approach might be

to put the plan or schema at the higher design represen-

tation level and point to the localized pieces in the lower

level Code or Physical representation. The practicality
of this approach, of course, needs to be determined.

Soloway et.al, also note that reviewers have difficulty

reviewing and understanding code that has been opti-

mized. To assist in code reviews and walkthroughs, the
unoptimized code sections might be shown in the refine-

ment of the Design Representation along with mappings

to the actual optimized code at the lower implementa-
tion level.

The possibilities for new types of information and rep-

17

INTRUDER.STATUS

I Other'Traffic h

[Proximate-Traffic ['-1

[Potential-Threat
Threat

[Threat _ Other-Traffic [

A

N

D

Alt-Reporting in-state Lost

Bearing-Valid m.478

Range-Valid v-t98

Proximate-Traffic-Condition m-498

P0 tential-Threat-C°nditi°n m-a94

Other-Aircraft in-state On-Ground

OR

T T T

F . T

• F T

• . F

.I • F

".__'.2_ ".L_ T

Description: A threat is reclassified as other traffic if its altitude reporting

has been lost (/kPR13) and either the bearing or range inputs are invalid;

if its altitude reporting has been lost and both the range and bearing are

valid but neither the proximate nor potential threat classification criteria

are satisfied; or the aircraft is on the ground _ PR12).

Mapping to Level 2: APR23, APR29

Mapping to Level 4: _'Section 7.1, Traffic-Advisory

Figure 6: Part of a SpecTRM-RL Blackbox Behavior level description of the criteria for downgrading the status of an
intruder (into our protected volume) from being labeled a threat to being considered simply as other traffic. Intruders
can be classified in decreasing order of importance as a threat, a potential threat, proximate traffic, and other traffic.
In the example, the criterion for taking the transition from state Threat to state Other 7_rafflc is represented by an
AND/OR table, which evaluates to TRUE if any of its columns evaluates to TRUE. A column is TRUE if all of its
rows that have a "T" are TRUE and all of its rows with an "F" are FALSE. Rows containing a dot represent "don't
care" conditions. The subscripts denote the type of expression (e.g., v for input variable, rn for macro, t for table,
and f for function) as well as the page in the document on which the expression is defined. A macro is simply an
AND/OR table used to implement an abstraction that simplifies another table.

18

resentations at this level of the intent hierarchy is the

subject of long-term research.

Other information at this level might include hardware

design descriptions, the human-computer interface de-

sign specification, the pilot operations (flight) manual,
and verification requirements for the requirements and

design specified on this level.

4.2.5 Physical Representation

The lowest level includes a description of the physical

implementation of the levels above. It might include the

software itself, hardware assembly instructions, training

requirements (plan), etc.

4.2.6 Example

To illustrate this approach to structuring specifications,

a small example is used related to generating resolution
advisories. TCAS selects a resolution advisory (vertical

escape maneuver) against other aircraft that are consid-
ered a threat to the aircraft on which the TCAS system

resides. A resolution advisory (RA) has both a sense
(upward or downward) and a strength (vertical rate),

and it can be positive (e.g., CLIMB) or negative (e.g.,

DON'T CLIMB). In the software to evaluate the sense

to be chosen against a particular threat, there is a pro-

cedure to compute what is called a "Don't-Care-Test."

The software itself (Level 5) would contain comments

about implementation decisions and also a pointer up

to the Level 4 design documentation and from there up
to the Level 3 black-box description of this test, shown

in Figure 7.

In turn, the blackbox (Level 3) description of the Dont-

Care-Test would be linked to Level 2 explanations of

the intent of the test and the reason behind (why) the
design of the test. For example, our Level 2 TCAS

intent specification contains the following:

PR35: Don't-Care-Test. When TCAS is

displaying an RA against one threat and then

attempts to choose a sense against a second

threat, it is often desirable to choose the same

sense against it as was chosen against the first

threat, even if this sense is not optimal for the

new threat. One advantage is display conti-

nuity (_ SC6). Another advantage is that the

pilot may maneuver more sharply to increase
separation against both threats. If a dual sense

advisory is given, such as DON'T CLIMB AND

DON'T DESCEND, a vertical maneuver to in-

crease separation against one threat reduces

separation against the other threat. The most

important advantage, however, is to avoid sac-

rificing separation inappropriately against the

first threat in order to gain a marginal advan-

tage against the second threat.

The don't-care test determines the relative

advantages of optimizing the sense against the

new threat versus selecting the same sense for
both threats. When the former outweighs the

latter, the threat is called a do-care threat; oth-

erwise, the threat is a don't-care threat.

This Level 2 description in turn points up to high-level

goals to maintain separation between aircraft and con-

straints (both safety-related and non-safety-related) on

how this can be achieved. We found while constructing
the TCAS intent specification that having to provide

these links identified goals and constraints that did not

seem to be documented anywhere but were implied by

the design and some of the design documentation.

Understanding the design of the Don't-Care-Test also

requires understanding other concepts of sense selection
and aircraft separation requirements that are used in

the blackbox description (and in the implementation) of
the Don't-Care-Test procedure. For example, the sepa-

ration between aircraft in Figure 7 is defined in terms

of ALIM. The concept is used in the Level 3 documen-

tation, but the meaning and intent behind using the

concept is defined in the basic TCAS design principles
at Level 2:

PR2: ALIM. ALIM is the desired or "ade-

quate" amount of separation between aircraft

that TCAS is designed to meet. This amount

varies from 400 to 700 feet, depending on own
aircraft's altitude. ALIM includes allowances to

account for intruder and own altimetry errors
and vertical tracking uncertainties that affect

track projections (see PRe2.3). The value of

ALIM increases with altitude to reflect increased

altimetry error (_ SC4.5) and the need to in-

crease tracked separation at higher altitudes.

The blackbox behavioral specification shown in Figure 7

also points to the module that implements this required

behavior in the design specification on Level 4. For

TCAS II, pseudocode was used for the design speci-

fication. Figure 8 shows the pseudocode provided by
MITRE for the Don't-Care-Test.

The structure of intent specifications has advantages in

solving various software engineering problems--such as

changing requirements, program understanding, main-

taining and changing code, and validation--as discussed
in the next section.

19

v

AIRCRAFT(i).STATUS

New I

,

AIRCRAFT(i).SENSE

[Climb t
I Descend

Unknown

OWN-RA-SENSE

Climb

Descend

Macro: Don't-Care-Test(i)

A

N

D

Aircraft(i).Capability v-_92 = TCAS-TA/RA

Aircraft(i).Status in-state New

Aircraft(i).Sense in-state Climb

Aircraft(i).Sense in-state Descend

Down-Separationf._l 7 < ALIM _ PR1]

Up-Separationr.u_ < ALIM _PR1]

Own-RA-Sense in-state Descend

Own-RA-Sense in-state Climb

Some Aircraft(j).Sense not-in-same-state-as

Aircraft(i).Sense

Some Aircraft(j).Vertical-Miss-Distance f-543

(RELALT, TAUM, TRTRU, TVPE)

< Separation-Second-Choice(i) f-s3s

OR

FIFIF
-- 1-'-'----4 --

TIT[T

T,., T

• ITI.
-- I,-------4 --

F I ° I °

-- I,--'.---4 --

• IFI.

• I ° I T

• ! ° I °

• ! ° I Z

.... T

Comment: The last two entries in the AND/OR table ensure that

there exists at least one other aircraft that is a threat and has

selected a sense opposite that of the current aircraft, and that

the modeled separation for that aircraft following a leveloff is

worse than the modeled separation for the current aircraft in the

opposite (second choice) sense.

Mapping to Level 2:_PR35

Mapping to Level 4: _'Sense.Dont-care-test

IFI
1"----'4

ITI
I--------4

I I

I • I

I--------4

ITI

I ° I

t ° r

I • I

ITI

ITI

ITI

Abbreviations:

ALIM = Positive-RA-Altitude-Limit-Thresholdt.545 [Alt-Layer-Valuer.510]

RELALT = Own-Tracked-Altr.529 + (4 s x Own-Tracked-Alt-Rate r-s2s) "Other-Tracked'Altr-s24

TAUM = Min (Max (Modified-Tau-Capped f-522' 10 s, True-Tau-Uncappedr._2)

TRTRU = True-tau-Capped r-542

TVPE = XTVPETBLX t-55z [Other-Sensitivity-Level v-391]

Figure 7: This macro is used in the defining which resolution advisory will be chosen when multiple aircraft (threats)
are involved, among the most complicated aspects of the collision avoidance logic. Abbreviations are used to enhance
readability.

20

PROCESS Sense.Don't_care_test;

I (?)Don't_Care_Testm_35r, (t)Climb-Desc.-Inhibitm_31r I

{WL threat = threat whose WL entry is input to task}

{TF threat = threat examined in loop below}

IF (either sense provides adequate separation)
THEN SET Don't_care flag for WL threat;

ELSE CLEAR Don't_care flag for WL threat;

IF (own resolution advisories show a Positive in second-choice sense)
THEN calculate own altitude following a leveloff;

REPEAT WHILE (more entries in threat file AND don't_care flag

for WL threat not set);

IF (resolution against TF threat shows a Positive in same sense

as second choice for WL threat)
THEN calculate altitude relative to TF threat and

time for leveloff;

{result of 'do care' for WL threat}
CALL vertical_miss_distance_calculation

IN (rel alt, rel vert rate, start time (WL threat)

end time (WL threat), clip time (WL threat));

IF (sep with leveloff vs. TR threat less than that

for second choice maneuver vs. WL threat)

THEN SET Don't_care flag for the WL threat;

{allow second choice sense}

Select next threat file entry;

ENDREPEAT;

END Don't_care_test;

Figure 8: The pseudocode for the Don't-Care-Test.

21

5 Intent Specification Support

for Software Engineering Prob-

lem Solving

As stated earlier, our representations of problems have

an important effect on our problem-solving ability and

the strategies we use. A basic hypothesis of this paper

is that intent specifications will support the problem

solving required to perform software engineering tasks.

This hypothesis seems particularly relevant with respect

to tasks involving education and program understand-

ing, search, design, validation, safety assurance, main-

tenance, and evolution.

5.1 Education and Program Under-

standing

Curtis et.al. [CKI88] did a field study of the require-

ments and design process for 17 large systems. They

found that substantial design effort in projects was

spent coordinating a common understanding among the
staff of both the application domain and of how the

system should perform within it. The most successful

designers understood the application domain and were

adept at identifying unstated requirements, constraints,
or exception conditions and mapping between these and

the computational structures. This is exactly the infor-

mation that is included in the higher levels of intent

specifications and the mappings to the software. Thus

using intent specifications should help with education in
the most crucial aspects of the system design for both

developers and maintainers and augment the abilities of

both, i.e., increase the intellectual manageability of the
task.

5.2 Search Strategies

Vicente and Rasmussen have noted that means-ends hi-

erarchies constrain search in a useful way by provid-

ing traceability from the highest level goal statements
down to implementations of the components [VR92]. By

starting the search at a high level of abstraction and

then deciding which part of the system is relevant to

the current goals, the user can concentrate on the sub-
tree of the hierarchy connected to the goal of interest:

The parts of the system not pertinent to the function of

interest can easily be ignored. This type of "zooming-
in" behavior has been observed in a large number of

psychological studies of expert problem solvers. Recent

research on problem-solving behavior consistently shows

that experts spend a great deal of their time analyzing
the functional structure of a problem at a high level of

abstraction before narrowing in on more concrete details

[BP87, BS91, GC88, Ras86, Ves85].

With other hierarchies, the links between levels are not

necessarily related to goals. So although it is possible

to use higher levels of abstraction in a standard decom-

position or refinement hierarchy to select a subsystem
of interest and to constrain search, the subtree of the

hierarchy connected to a particular subsystem does not

necessarily contain system components that are relevant

to the goals and constraints that the problem solver is

considering.

Upward search in the hierarchy, such as that required

for debugging, is also supported by intent specifications.
Vicente and Rasmussen claim (and have experimental

evidence to support) that in order for operators to cor-

rectly and consistently diagnose faults, they must have

access to higher-order functional information since this

information provides a reference point defining how the

system should be operating. States can only be de-
scribed as errors or faults with reference to the intended

purpose. Additionally, causes of improper functioning

depend upon aspects of the implementation. Thus they

are explained bottom up. The same argument seems to

apply to software debugging. There is evidence to sup-

port this hypothesis. Using protocol analysis, Vessey
found that the most successful debuggers had a "sys-

tem" view of the software [Ves85].

5.2.1 Design Criteria and Evaluation

An interesting implication of intent specifications is

their potential effect on system and software design.

Such specifications might not only be used to under-

stand and validate designs but also to guide them.

An example of a design criterion appropriate to intent

specifications might be to minimize the number of one-
to-many mappings between levels in order to constrain
downward search and limit the effects of changes in

higher levels upon the lower levels. Minimizing many-

to-many (or many-to-one) mappings would, in addition,
ease activities that require following upward links and

minimize the side effects of lower-level changes.

Intent specifications assist in identifying intent-

related structural dependencies (many-to-many map-

pings across hierarchical levels) to allow minimizing
them during design, and they clarify the tradeoffs be-

ing made between conflicting goals. Software engineer-

ing attempts to define coupling between modules have
been limited primarily to the design level. Perhaps an

intent specification can provide a usable definition of

coupling with respect to emergent properties and to as-

sist in making design tradeoffs between various types of

high-level coupling.

22

5.3 Minimizing the Effects of Require-
ments Changes

Hopefully,thehighestlevelsofthespecificationwillnot
change,butsometimestheydo,especiallyduringdevel-
opmentassystemrequirementsbecomebetterunder-
stood. Functionalandintentaspectsarerepresented
throughoutanintentspecification,but in increasingly
abstractandglobaltermsatthehigherlevels.Thehigh-
estlevelsrepresentmorestabledesigngoalsthatareless
likely to change(suchasdetectingpotentialthreatsin
TCAS),butwhentheydotheyhavethemostimportant
(andcostly)repercussionson thesystemandsoftware
designanddevelopment,andtheymayrequireanaly-
sisandchangesat all the lowerlevels.Weneedto be
ableto determinethepotentialeffectsof changesand,
proactively,to designto minimizethem.

ReversalsinTCASareanexampleofthis. Aboutfour
yearsafterthe originalTCASspecificationwaswrit-
ten,expertsdiscoveredthatit didnotadequatelycover
requirementsinvolvingthecasewherethe pilot of an
intruderaircraftdoesnot followhisor herTCASad-
visoryandthusTCASmustchangetheadvisoryto its
ownpilot. Thischangein basicrequirementscaused
extensivechangesin theTCASdesign,someof which
introducedadditionalsubtleproblemsanderrorsthat
tookyearsto discoverandrectify.

Anticipatingexactlywhatchangeswill occurandde-
signingto minimizetheeffectsof thosechangesisdif-
ficult,andthepenaltiesfor beingwrongaregreat.In-
tent specificationstheoreticallyprovidetheflexibility
andinformationnecessaryto designto easehigh-level
requirementschangeswithouthavingto predictexactly
whichchangeswill occur:Theabstractionanddesign
arebasedonintent(systemrequirements)ratherthan
onpart-wholerelationships(whicharetheleastlikely
to changewith respectto requirementor environment
changes).

5.4 Design of Run-Time Assertions

Finally, intent specifications may assist software engi-

neers in designing effective fault-tolerance mechanisms.

Detecting unanticipated faults during execution has
turned out to be a very difficult problem. For exam-

ple, in one of our empirical studies, we found that pro-

grammers had difficulty writing effective assertions for
detecting errors in executing software [LCKS90]. I have

suggested that using results from safety analyses might
help in determining which assertions are required and
where to detect the most important errors [Lev91]. The

information in intent specifications tracing intent from

requirements, design constraints, and hazard analyses

through the system and software design process to the

software module (and back) might assist with writing ef-
fective and useful assertions to detect general violations

of system goals and constraints.

5.5 Safety Assurance

A complete safety analysis and methodology for build-

ing safety-critical systems requires identifying the

system-level safety requirements and constraints and
then tracing them down to the components [Lev95]. Af-

ter the safety-critical behavior of each component has

been determined (including the implications of its be-

havior when the components interact with each other),

verification is required that the components do not vio-

late the identified safety-related behavioral constraints.

In addition, whenever any change is made to the sys-
tem or when new information is obtained that brings

the safety of the design into doubt, revalidation is re-

quired to ensure that the change does not degrade sys-
tem safety. To make this verification (and reverifica-

tion) easier, safety-critical parts of the software should
be isolated and minimized.

This analysis cannot be performed efficiently unless
those making decisions about changes and those actu-

ally making the changes know which parts of the system

affect a particular safety design constraint. Specifica-
tions need to include a record of the design decisions

related to basic safety-related system goals, constraints,

and hazards (including both general design principles
and criteria and detailed design decisions), the assump-

tions underlying these decisions, and why the decisions
were made and particular design features included. In-

tent specifications capture this information and provide
the ability to trace design features upward to specific

high-level system goals and constraints.

5.6 Software Maintenance and Evolu-

tion

Although intent specifications provide support for a top-

down, rational design process, they may be even more

important for the maintenance and evolution process
than for the original designer, especially of smaller or

less complex systems. Software evolution is challenging

because it involves many complex cognitive processes--

such as understanding the system's structure and func-

tion, understanding the code and documentation and

the mapping between the two, and locating inconsisten-

cies and errors--that require complex problem-solving

strategies.

Intent specifications provide the structure required for

23

recording the most important design rationale informa-

tion, i.e., that related to the purpose and intent of the

system, and locating it when needed. They, therefore,

can assist in the software change process.

While trying to build a model of TCAS, we discov-

ered that the original conceptual model of the TCAS

system design had degraded over the years as changes
were made to the pseudocode to respond to errors found,

new requirements, better understanding of the problem

being solved, enhancements of various kinds, and er-

rors introduced during previous changes. The specific

changes made often simplified the process of making the

change or minimized the amount of code that needed

to be changed, but complicated or degraded the origi-
nal model. Not having any clear representation of the

model also contributed to its degradation over the ten

years of changes to the pseudocode.

By the time we tried to build a representation of the

underlying conceptual model, we found that the system

design was unnecessarily complex and lacked concep-
tual coherency in many respects, but we had to match

what was actually flying on aircraft. I believe that mak-

ing changes without introducing errors or unnecessarily
complicating the resulting conceptual model would have

been simplified if the TCAS staff had had a blackbox

requirements specification of the system. Evolution of

the pseudocode would have been enhanced even more if
the extra intent information had been specified or orga-

nized in a way that it could easily be found and traced
to the code.

Tools for restructuring code have been developed to

cope with this common problem of increasing com-

plexity and decreasing coherency of maintained code

[GN95]. Using intent specifications will not eliminate
this need, but we hope it will be reduced by provid-

ing specifications that assist in the evolution process
and, more important, assist in building software that is

more easily evolved and maintained. Such specifications

may allow for backing up and making changes in a way
that will not degrade the underlying conceptual model

because the model is explicitly described and its impli-
cations traced from level to level. Intent specifications

may also allow controlled changes to the higher levels of

the model if they become necessary.

Maintenance and evolution research has focused on ways

to identify and capture information from legacy code.

While useful for solving important short-term problems,

our long term goal should be to specify and design sys-
tems that lend themselves to change easily--that is,

evolvable systems. Achieving this goal requires devis-

ing methodologies that support change throughout the
entire system life cycle--from requirements and specifi-

cation to design, implementation and maintenance. For

example, we may be able to organize code in a way
that will minimize the amount of code that needs to be

changed or that needs to be evaluated when deciding if

a change is safe or reasonable.

In summary, I believe that effective support for such

evolvable systems will require a new paradigm for

specification and design and hypothesize that such a

paradigm might be rooted in abstractions based on in-
tent. Intent specifications provide the framework to in-

clude the information maintainers need in the specifica-

tion. They increase the information content so that less

inferencing (and guessing) is required. Intent specifica-

tions not only support evolution and maintenance, but

they may be more evolvable themselves, which would

ease the problem of keeping documentation and imple-
mentation consistent. In addition, they also provide the

possibility of designing for evolution so that the systems
we build are more easily maintained and evolved.

6 Conclusions

Specifications are constructed to help us solve prob-

lems. Any theory of specification design, then, should
be based on fundamental concepts of problem-solving

behavior. It should also support the basic systems en-

gineering process. This paper has presented one such

approach to system and software specifications based

on underlying ideas from psychology, systems theory,
human factors, system engineering, and cognitive engi-

neering.

The choice of content, structure, and form of specifi-

cations have a profound effect on the kind of cognitive

processing that the user must bring to bear to use a
specification for the tasks involved in system and soft-

ware design and construction, maintenance, and evolu-

tion. Intent specifications provide a way of coping with

the complexity of the cognitive demands on the builders
and maintainers of automated systems by basing our

specifications on means-ends as well as part-whole ab-
stractions. I believe that the levels of the means-ends

hierarchy reflect a rational design philosophy for the sys-

tems engineering of complex systems and thus a rational

way to specify the results of the process. They pro-

vide mapping (tracing) of decisions made earlier into

the later stages of the process. Design decisions at each

level are linked to the goals and constraints they are
derived to satisfy. A seamless (gapless) progression is

recorded from high-level system requirements down to

component requirements, design, and implementation.

In addition, intent specifications provide a way of in-

tegrating formal and informal aspects of specifications.

Completely informal specifications of complex systems

24

tendto beunwieldyanddifficultto validate.Com-
pletelyformalspecificationsprovidethepotentialfor
mathematicalanalysisandproofsbut omit necessary
informationthatcannotbespecifiedformally.Somefor-
malapproachesrequirebuildingspecialmodelsinaddi-
tion to theregularsystemspecifications.I believethat
the wide-spreaduseof formalspecificationsin indus-
try will requirethedevelopmentofformalspecifications
that arereadablewith minimaltrainingrequirements
andthat are integratedwith informalspecifications.
Ideally,formalanalysisshouldnotrequirebuildingspe-
cialmodelsthat duplicatethe informationincludedin
thespecificationor it isunlikelythatindustrywill find
theuseof formalmethodsto becosteffective.

Anexampleintentspecificationfor TCASII hasbeen
constructedandwasusedasanexamplein thispaper.
Thereaderiscautioned,however,that intentspecifica-
tionsarea logicalabstractionthat canberealizedin
manydifferentphysicalways.That is, theparticular
organizationusedfor theTCASspecificationissimply
onepossiblephysicalrealizationof thegenerallogical
organizationinherentin intentspecifications.

7 REFERENCES

[AT90]

[Ash62]

[BP87]

[Bro83]

[BL98]

[BS91]

[Cas91]

D. Ackermann and M. J. Tauber, editors.

Mental Models and Human-Computer Inter-
action. North-Holland, Amsterdam, 1990.

W.R. Ashby. Principles of the self-organizing

system, in H. Von Foerster and G.W. Zopf

(eds.) Principles of Sell-Organization, Perga-

mon, 1962.

M. Beveridge and E. Parkins. Visual represen-

tation in analogical program solving. Memory

and Cognition, v. 15, 1987.

R. Brooks. Towards a theory of comprehen-

sion of computer programs. Int. Journal of

Man-Machine Studies, 18:543-554, 1983.

M. Brown and N. G. Leveson. Modeling

Controller Tasks for Safety Analysis. Second

Workshop on Human Error and System De-

velopment, Seattle, April 1998.

M.A. Buttigieg and P.M. Sanderson. Emer-

gent features in visual display design for two

types of failure detection tasks. Human Fac-

tors, 33, 1991.

S.M. Casner. A task analytic approach to the

automated design of graphic presentations.

ACM Transactions on Graphics, vol. 10, no.

2, April 1991.

[Che81] P. Checkland. Systems Thinking, Systems

Practice. John Wiley & Sons, 1981.

[CKI88] B. Curtis, H. Krasner and N. Iscoe. A field

study of the software design process for large

systems. Communications of the ACM, 31(2):
1268-1287, 1988.

[DB83] DeKleer J, and J.S. Brown. Assumptions and

ambiguities in mechanistic mental models. In

D. Gentner and A.L. Stevens (eds.), Mental
Models, Lawrence Erlbaum, 1983.

[DV96] N. Dinadis and K.J. Vicente. Ecological inter-
face design for a power plant feedwater sub-

system. IEEE Transactions on Nuclear Sci-

ence, in press.

[Dor87] D. Dorner. On the difficulties people have in

dealing with complexity. In Jens Rasmussen,
Keith Duncan, and Jacques Leplat, editors,

New Technology and Human Error, pages 97-

109, John Wiley & Sons, New York, 1987.

[Dun87] K.D. Duncan. Reflections on fault diagnostic
expertise. In Jens Rasmussen, Keith Duncan,

and Jacques Leplat, editors, New Technology
and Human Error, pages 261-269, John Wiley

& Sons, New York, 1987.

[FSL78] B. Fischoff, P. Slovic, and S. Lichtenstein.
Fault trees: Sensitivity of estimated failure

probabilities to problem representation. Jour-

nal of Experimental Psychology: Human Per-

ception and Performance, vol. 4, 1978.

[FG79] Fitter and Green. When do diagrams make
good programming languages?. Int. J. of

Man-Machine Studies, 11:235-261, 1979.

[GC88] R. Glaser and M. T. H. Chi. Overview. In

R. Glaser, M. T. H. Chi, and M. J. Farr, edi-

tors, The Nature of Expertise. Erlbaum, Hills-

dale, New Jersey, 1988.

[GN95] W. Griswold and D. Notkin. Architectural

tradeoffs for a meaning-preserving program

restructuring tool. IEEE Transactions on

Software Engineering, 21(4):275-287, March
1995.

[Har82] G. Harman. Logic, reasoning, and logic form.
In Language, Mind, and Brain, T.W. Simon

and R.J. Scholes (eds.), Lawrence Erlbaum

Associates, 1982.

[JLHM91] M.S. Jaffe, N.G. Leveson, M.P.E. Heim-

dahl, and B.Melhart. Software requirements

analysis for real-time process-control systems.
IEEE Trans. on Software Engineering, SE-

17(3), March 1991.

25

[KS90] C.A.KaplanandH.A.Simon.In searchof
insight.Cognitive Psychology, vol. 22, 1990.

[KHS85] K. Kotovsky, J.R. Hayes, and H.A. Simon.

Why are some problems hard? Evidence from
Tower of Hanoi. Cognitive Psychology, vol. 17,
1985.

[Let86] S. Letovsky. Cognitive processes in program
comprehension. In Proceedings of the First
Workshop on Empirical Studies of Program-

mers, pages 58-79. Ablex Publishing, Nor-

wood, N J, 1986.

[Lev91] N.G. Leveson. Software safety in embedded
computer systems. Communications of the

ACM, vol. 34, no. 2, February 1991.

[Lev95] N.G. Leveson. Safeware: System Safety and

Computers. Addison-Wesley Publishing Com-

pany, 1995.

[LCKS90] N.G. Leveson, S.S. Cha, J.C. Knight, and
T.J. Shimeall. The use of self-checks and vot-

ing in software error detection: An empirical

study. IEEE Transactions on Software Engi-

neering, vol. SF_,-16, no. 4, April 1990.

[LHHR94] N.G. Leveson, M. P.E. Heimdahl, H. Hil-
dreth, and J.D. Reese. Requirements spec-

ification for process-control systems. Trans.

on Software Engineering, SE-20(9), Septem-
ber 1994.

[LPS97]

[Luc87]

[New66]

[Nor93]

[RP95]

N.G. Leveson, L.D. Pinnel, S.D. Sandys, S.

Koga, and J.D. Reese. Analyzing software

specifications for mode confusion potential.

Workshop on Human Error and System De-

velopment, Glascow, March 1977.

D.A. Lucas. Mental models and new technol-

ogy. In Jens Rasmussen, Keith Duncan, and

Jacques Leplat, editors, New Technology and
Human Error, pages 321-325. John Wiley &

Sons, New York, 1987.

J.R. Newman. Extension of human capability

through information processing and display

systems. Technical Report SP-2560, System

Development Corporation, 1966.

D.A. Norman. Things that Make us Smart.

Addison-Wesley Publishing Company, 1993.

J. Rasmussen and A. Pejtersen. Virtual ecol-

ogy of work. In J. M. Flach, P. A. Hancock,
K. Caird and K. J. Vicente, editors An Eco-

logical Approach to Human Machine Systems

I: A Global Perspective, Erlbaum, Hillsdale,

New Jersey, 1995..

[Pen87]

[Ras85]

[R 86]

[aas90]

[Reag0]

[SWB95]

[SM79]

[Smi89]

[SE84]

[So188]

[Ves85]

[Vic91]

N. Pennington. Stimulus structures and men-

tal representations in expert comprehension

of computer programs. Cognitive Psychology
19:295-341,1987.

J. Rasmussen. The Role of hierarchical knowl-

edge representation in decision making and
system management. IEEE Transactions on

Systems, Man, and Cybernetics, vol. SMC-15,

no. 2, March/April 1985.

J. Rasmussen. Information Processing and

Human-Machine Interaction: An Approach

to Cognitive Engineering. North Holland,
1986.

J. Rasmussen. Mental models and the con-

trol of action in complex environments. In

D. Ackermann and M.J. Tanber (eds.) Men-

tal Models and Human-Computer Interaction,

Elsevier (North-Holland), 1990, pp. 41-69.

J. Reason. Human Error. Cambridge Univer-

sity Press, 1990.

N.D. Sarter, D.D. Woods, and C.E. Billings.

Automation Surprises. in G. Salvendy (Ed.)

Handbook of Human Factors/Ergonomics,

2nd Edition, Wiley, New York, in press.

B. Shneiderman and R. Mayer. Syntac-

tic/semantic interactions in programmer be-
havior: A model and experimental results.

Computer and Info. Sciences, 8(3):219-238,
1979.

G.F. Smith. Representational effects on the

solving of an ungtructured decision problem.
IEEE Transactions on Systems, Man, and

Cybernetics, vol. SMC-19, 1989, pp. 1083-
1090.

E. Soloway and K. Ehrlich. Empirical studies

of programming knowledge. IEEE Trans. on
Software Engineering, vol. SE-10(5):595-609,
1984.

E. Soloway, J. Pinto, S. Letovsky, D. Littman,

and R. Lampert. Designing documentation to

compensate for delocalized plans. Communi-
cations of the ACM, 31(2): 1259-1267, 1988.

I. Vessey. Expertise in debugging computer

programs: A process analysis. Int. J. of Man-
Machine Studies, vol. 23, 1985.

K.J. Vicente. Supporting knowledge-based

behavior through ecological interface design.

Ph.D. Dissertation, University of Illinois at

Urbana-Champagne, 1991.

26

[VCP95]

[VRg0]

[VR92]

[Wei89]

[Woo95]

K.J. Vicente, K. Christoffersen and A. Perek-

lit. Supporting operator problem solving

through ecological interface design. IEEE
Transactions on Systems, Man, and Cyber-

netics, 25(4):529-545, 1995.

K.J. Vicente and J. Rasmussen. The ecol-

ogy of human-machine systems II: Mediating

direct perception in complex work domains.

Ecological Psychology, 2(3):207-249, 1990.

K.J. Vicente and J. Rasmussen. Ecological in-

terface design: Theoretical foundations. IEEE
Trans. on Systems, Man, and Cybernetics, vol

22, No. 4, July/August 1992.

E.L. Wiener. Human Factors of Advanced

Technology ("Glass Cockpit") Transport Air-

craft. NASA Contractor Report 177528,
NASA Ames Research Center, June 1989.

D.D. Woods. Toward a theoretical base

for representation design in the computer

medium: Ecological perception and aiding hu-

man cognition. In J. M. Flach, P. A. Hancock,
K. Caird and K. J. Vicente, editors An Eco-

logical Approach to Human Machine Systems
I: A Global Perspective, Erlbanm, Hillsdale,

New Jersey, 1995.

27

